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I 

P R E F A C E  

A character is t ic  feature of modern industrial  and production p rocesses  
is that t he i r  qualitative and quantitative pa rame te r s  a r e  a function of many 
interdependent and interconnected variables.  
must  be maintained constant o r  made t o  va ry  in a manner  prescr ibed 
by the character is t ic  features  of the given process .  
c o n t r o l l e d  v a r i a b l e s  of the process .  Their  number is not fixed, 
and some fair ly  complex sys t ems  may have but a single controlled variable.  
Such single-variable sys t ems  a r e  t reated very extensively in the cu r ren t  
l i t e r a tu re  on automatic control theory. 

sys t ems  with many controlled var iables  (at  least  more  than one). 

and the modern tendency is toward eve r  g rea t e r  utilization of sys t ems  and 
plants of this  kind. 

The s implest  examples of multivariable plants a r e  provided by complex 
industrial  equipment. Boilers,  synchronous electr ical  machines,  etc. ,  
a r e  typical examples. In these machines some var iables ,  e .  g., s t eam 
p res su re ,  s team temperature ,  voltage, a .  c.  frequency, a r e  maintained 
a t  a cer ta in  setting, although the total  number of var iables  (the number 
of generalized degrees  of freedom) is much higher. 

how t o  control each of the var iables  if they a r e  interdependent, so  that a 
change in one of the var iables  a l t e r s  a l l  the  o the r s?  The solution w a s  
provided by I . N .  Voznesenskii, who can be regarded a s  the originator of 
the theory of autonomous, noninteracting control systems:  the basic idea 
was to  design a control system with independent var iables ,  where variation 
of one variable did not change the other  variables.  
to  be quite useful for  a number of controlled objects and it is current ly  the 
only practicable solution of the problem in some cases .  

and in cer ta in  cases  it is even meaningless.  The re  is a by-now classical  
i l lustration of this  point. In continuous cold o r  hot rolling of sheet metal ,  
the controlled variables include the dr ive speeds,  rol l  gaps,  etc., but the 
quality and mainly the geometry of the finished product do not depend on 
each controlled variable separately,  but on the i r  combination, so that 
control of each individual variable ignoring al l  the others  a t  any given 
t ime is a meaningless procedure.  

be t reated as  noninteracting, t h e r e  a r e  c a s e s  of inherently interacting 
var iables ,  which cannot be adjusted individually. 

Some of the p rocess  var iables  

These a r e  the so-called 

The present book, on the other hand, is devoted to automatic control 

Examples abound of sys t ems  with numerous controlled var iables ,  

We call  them multivariable control sys t ems  (MCS).:: 

The development of multivariable control sys t ems  led t o  a new problem: 

This approach proved 

However, this  solution is inapplicable to  most multivariable objects,  

Therefore ,  in addition t o  controlled objects which technologically can 

In the l a t t e r  class we 

* A more rigorous definition of a multivariable control system is given in the following. 
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put a l l  the plants o r  processes  where the generalized quality index of the 
finished product depends on all the controlled variables simultaneously. 
It is shown in this book that the design of noninteracting sys tems is not 
always the best  policy, not even f o r  controlled objects where this  is 
technically feasible. 
numerous cases  when noninteraction is simply unfeasible. 

as  everything depends on the problem being considered and the par t icular  
conditions. For example, a synchronous electr ic  machine as such falls 
in the first category, whereas the same  machine as part  of a power 
t ransmiss ion  system i s  an excellent example of a component in a sys tem 
with inherently interacting variables.  

The basic problem of the present book i s  to elucidate the fundamental 
propert ies  of multivariable control sys tems.  Whenever possible, I t r ied 
to a s s e s s  and evaluate the current  methods and techniques for  the synthesis 
and analysis of control sys tems and to  describe some of my original r e su l t s  

The book compr ises  an introduction and eight chapters.  The introduction 
outlines the scope of the treatment and defines the fundamental concepts. 

Chapter One is devoted to mathematical description of some typical 
mutlivariable objects and control sys tems.  
i s  largely determined by my own field of interest .  However, it s e e m s  to 
me  that the examples of Chapter One a r e  of general  significance a s  being 
representative of the principal branches of industry - metallurgy, power 
engineering, oil engineering and oil refining, The derivation of the 
equation of the rectifying column and the analysis of i t s  behavior as a 
controI system were ca r r i ed  out by Yu. N. Mikhailov under my supervision. 

Chapter Two i s  devoted to the derivation of the equations of multivariable 
control sys tems consisting of single -variable subsystems that a r e  made up 
of basic (necessary  but not sufficient) elements.  It wi l l  become c l ea r  f rom 
what follows that this is not a fundamental restriction, since the technique 
used in the derivation of the equations and the methods employed in their  
investigation a r e  applicable to  the more  general  ca ses  too. The principal 
s t ructural  properties of this  c l a s s  of sys tems a r e  elocidated for  both the 
steady-state and transient conditions. In particular,  the ma t r ix  of e r r o r  
coefficients is determined for  the case of plant and control coupling of the 
individual variables.  

Chapters Three  and F o u r  investigate the genera l  s t ructural  propert ies  
of multivariable control sys tems.  
s t ruc tu res  with infinite-gain stability in each subsystem; in these s t ruc tu res  
every  single-variable subsystem is clear ly  a multiloop configuration. 

Multivariable combined-control sys tems a r e  treated separately in 
Chapter Five. Considerable space is devoted, in particular,  to sys tems 
where simultaneous deviation and load control is applied t o  s t ruc tu res  of 
infinite-gain stability. 

Chapter Six deals with the problems of noninteraction and invariance. 
The presentation begins with a discussion of the resul ts  of Voznesenskii 
(USSR) and of Boksenbom and Hood (USA). 
invariance problem and describe the fundamental r e su l t s  of Kulebakin 
and Petrov.  Next, noninteraction and invariance a r e  treated as s t ructural  
properties of a cer ta in  c l a s s  of sys tems.  
(in the sense  of A.A. Andronov), various cases  of noise rejection, etc., 
a r e  considered in great detail.  

We must  emphasize,  however, that there  a r e  very  

These two c l a s ses ,  however, are not separated by a. Chinese Wall, 

The choice of the examples 

The main emphasis is on the c l a s s  of 

We then proceed with the 

Realizability and coa r seness  

... 
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Chapter Seven is concerned with the design of f ixed-structure  sys tems 
which a r e  equivalent in the i r  propert ies  to self-adjusting o r  adaptive 
control systems.  
gain stability, which have been t rea ted  in considerable detail in the 
preceding chapters .  
dealt with, and examples of sys tems with variable coefficients a r e  
examined. The theoret ical  resu l t s  a r e  applied to a pract ical  control 
problem accommodating a la rge  variation of the plant gain. 

control. Optimization considerations suggest that the multivariable control 
sys tems should be divided into two c lasses :  sys t ems  where the general  
optimum is attained by optimizing each single-variable subsystem, ignoring 
the interaction with other  controlled var iables  (in this c l a s s  optimization 
is synonimous to noninteraction) and sys tems with a generalized quality 
index which depends simultaneously on a l l  the controlled var iables .  
par t icular  example is considered where the control specifications a r e  
given a s  a function of time. Here of par t icular  interest  a r e  plants without 
memory,  to  which l inear  programming can be successfully applied. This  
range of problems was studied jointly by m e  and E. S .  Silimzhanov. 
resu l t s  of Sarachik and Kranc, a l so  discussed in Chapter Eight, a r e  of 
considerable interest  for  the determination of the control vector a s  a 
function of t ime for  multivariable objects. Classical  variational techniques 
and dynamic programming a r e  applied to  determine the control ler  equations 
in a multivariable system. 
variational problem in an open domain yields s t ruc tures  with an infinite 
gain parameter .  
a s  only the f i r s t  s tep  toward a comprehensive solution of the problem of 
synthesis of multivariable control systems.  

the book and offered a number of highly valuable comments which greatly 
contributed to the finished product. 

The discussion is based on s t ruc tures  with infinite- 

The s t ruc tura l  aspect  of the sensitivity problem is 

Chapter  Eight i s  concerned with the variational aspects  of multivariable 

A 

The 

It is remarkable  that the solution of the 

On the whole the t reatment  of this chapter can be regarded 

It is my pleasant duty to  thank Prof .  A. A.  Fel 'dbaum who reviewed 

M. Meerov 
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INTR 0 D UC TION 

In multivariable objects or  plants the number of controlled var iables  is 
g rea t e r  than one and in general  these var iables  are interconnected in such 
a way that a change in any of the controlled var iables  a l t e r s  all the other  
var iables  ( this  refers to  steady-state conditions, as well as  t o  t ransients) .  

If the controlled var iables  are regarded as the plant outputs, we may  
say  that a multivariable plant has  m o r e  than one output, and a change in 
any one of i t s  outputs leads to  a change in all the outputs. 

If a closed control loop is hooked up fo r  each of the controlled var iables ,  
we end up with a multivariable control system. 

M u l t i v a r i a b l e  c o n t r o l  s y s t e m s  (MCS) are thus defined 
in general  a s  c o n t r o l  s y s t e m s  w i t h  s e v e r a l  c o n t r o l l e d  
v a r i a b l e s  w h i c h  a r e  c o u p l e d  i n  s u c h  a w a y  t h a t  a c h a n g e  
i n  a n y  o n e  v a r i a b l e  l e a d s  t o  a c h a n g e  i n  a l l  t h e  v a r i -  
a b l e  s ,  assuming of course that no special  decoupling device is provided. 

var iables  are temperature ,  s team p res su re ,  and water level; a turbojet 
engine, where both the revolutions and the gas  temperature  a t  the turbine 
outlet are controlled; a synchronous generator,  where the voltage and 
the speed a r e  controlled (if  the synchronous generator is connected in 
parallel  with other machines, the active and reactive power output are 
additional controlled var iables) .  

In the above examples the interrelationship between the individual 
var iables  is due t o  natural  ( internal)  propert ies  of the controlled object, 
Another extensive group of multivariable control systems arises in 
connection with automation of production processes .  
between the individual controlled var iables  in these sys t ems  is generally 
due to  technical and production factors.  
feedback control system for  the electr ic  dr ives  in hot and cold continuous 
rolling mills.  

in continuous cold rolling. 

Typical multivariable objects a r e  a boiler,  where the controlled 

The interaction 

An excellent example is the 

Figure 1-1 is a block diagram of a system controlling the sheet thickness 
Thickness gages (TG) are provided a f t e r  each 

FIGURE 1-1. Block diagram of strip gage control in a con- 
tinuous rolling mill. 

I 



Stand. 
maintaining constant rolling stress. The gage output signal is delivered 
to the servosystem controlling the pressing screws.  The rolling s t r e s s ,  
on the other hand, is maintained constant by adjusting the speed r a t io  of 
the main dr ives  and the coi ler  speed. 
however, are interconnected through the rolled metal  s t r i p ,  and thus 
constitute a complex multivariable system. 

The situation is considerably m o r e  complicated in hot rolling. 
the thickness gage can be installed only after the l a s t  stand; moreover ,  
i t  is desirable t o  control the s t r i p  thickness a t  minimum permissible  
tension. 
Variation of s t r i p  temperature  and the heating of ro l l s  also have a con- 
siderable influence; t he re  is always a cer ta in  contribution from other 
entirely random factors  as well. 
s t r i p  thickness 6 constant. The gage 6 depends on the position of the 
pressing screws,  the speed rat io  of the main dr ives ,  temperature ,  and 
other random factors :  

The sheet thickness is regulated by adjusting the rol l  gap and 

These two groups of control systems,  

Here  

In hot rolling the s t r i p  thickness is highly sensit ive to  tension. 

The object of control is to maintain the 

a = f [ F ~ r  ( t ) ,  F n [ , n t - l ( O r  0, B(xi)]. (1-1) 

Here Fpr ( t )  is the control function of the pressing sc rews  in the stands,  
Fni, n i - i ( t )  is the control function of the main dr ives ,  0 is the temperature ,  
p ( x i )  is a disturbance dependent on random factors .  

We see  from (1-1) that the controlled variable depends on the determinate 
functions F,, ( f )  , FnI,  nL- , ( t ) ,  and a random function p ( x i ) .  
and Fni, ,,+,(t) are interrelated,  and they jointly determine the geometry and, 
in particular,  the thickness of the rolled s t r ip .  
is to choose the functions Fpr(t) and Fni,+,(f)and the function f for  given 0 
and known probability distribution of p ( x i )  so that the thickness 6 is between 
predetermined l imits.  

In rolling mi l l s  the s t r i p  tension control system and the rol l  positioning 
system a r e  coupled through the metal  s t r ip .  
refining and sulfur stabilization of crude oil (dehydration and desalination) 
comes under the same  category; the controlled variables he re  a r e  t empera -  
ture ,  flow rate, and liquid level, as well as the quantity of the chemical 
reagent which is fed separately into the system. 
should be so chosen that oil of desired quality is obtained a t  a minimum cost.  

There are many other examples f rom modern industry and technology 
where the desired quality of the finished product is ensured by simultane- ' 
ously controlling a number of variables.  The controlled var iables  are 
generally coupled, so  that a change in some of the var iables  l eads  to  a 
change in a l l  the variables.  
control theory provides a theoretical  foundation t o  l a rge  -scale compre - 
hensive automation of industrial  and technological processes .  

The third group of multivariable control systems comprises  the so- 
called m u l t i d i m e n s i o n a l  s e r v o s y s t e m s .  These are derived f rom 
ordinary servosystems by imposing coupling on the measuring elements.  
In this ca se  we speak of the coupling of the component s e rvos  through 
the measuring devices o r  control coupling, 
dimensional servosystem, and Figure 1-3 a three-dimensional s e rvo -  
system. 

The functions F,, ( t )  

The control problem here 

The system for  p r imary  

The control function 

We can safely say  that the multivariable 

Figure 1-2 shows a two- 

This combination of individual s e rvos  into a single multidimensional 

2 
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sys t em may be due to  the particular requirements of the technological 
p rocess ,  e.  g., a copying machine. 
the quality of automatic control. 

In some cases  it a l so  helps to improve 

FIGURE 1-2. A two-dimensional 
servosystem. 

FIGURE 1-3. A three-dimensional 
servosystem. 

A common property of all multivariable control sys tems is that they 

The number of control lers  is 
have seve ra l  controlled var iables  (more  than one). 
is designed fo r  each controlled variable. 
naturally at least  equal to the number of controlled variables.  
var iable  plants the number of inputs is not l e s s  than the number of outputs. 
It will be c l e a r  f rom the following examples that the number of controllers 
(active inputs) i s  often g rea t e r  than the number of controlled variables.  
Moreover,  the controlled object is subjected to external disturbances 
which may vary  a rb i t r a r i l y  (and a r e  often described by random functions). 
External disturbances,  o r  loads,  can be applied to some of the controlled 
var iables  o r  to  a l l  of them. A multivariable control system thus contains 
all the component elements which a r e  normally encountered in sys tems 
with one controlled variable.  

However, the presence of several  controlled variables constitutes more  
than a simple quantitative difference between multivariable and single- 
variable sys tems.  The re  a r e  some special  problems which a r e  cha rac t e r -  
is t ic  of multivariable control sys tems,  and it would be incorrect to assume 
that the multivariable control theory i s  a simple generalization of the 
control theory for  sys tems with a single variable.  

the sys tem.  
determined by the nonlinearity of the character is t ics ,  saturation phenomena, 
etc., whereas in multivariable sys t ems  the constraints may be connected 
with the peculiar cha rac t e r  of the controlled variables.  The presence of 
s eve ra l  coupled controlled var iables  is a novel aspect in stability analysis 
and quality considerations, not encountered in single-variable sys tems.  
The study of multivariable sys t ems  a l so  gives rise to  cer ta in  topics 
without counterpart  in conventional control theory, such as (a) the problem 
of noninteraction, (b) the problem of maintaining a given relationship 

A separate  subsystem 

In multi-  

For  example, le t  u s  consider the problem of constraints imposed on 
In single-variable sys t ems  tKese constraints a r e  mainly 
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between the controlled var iables ,  and (c) the problem of interacting control,  
which minimizes  (or maximizes)  a cer ta in  quantity (e.  g., the quality of the 
finished product in a technological process) .  

Structure synthesis,  which h a s  emerged a s  one of the basic  problems 
in single-variable control sys t ems ,  acquires  special  significance in 
multivariable control. 
book that the coupling between the individual controlled var iables  essentially 
depends on the s t ruc tu re  of the multivariable system, and noninteraction 
may  be derived as a s t ructural  property of a cer ta in  c l a s s  of s t ruc tu res .  
The contribution from inherently nonlinear character is t ics  of the var ious 
elements and their  influence on the coupling between the var iables  and, 
in particular,  on the noninteraction aspects  deserve special  consideration. 
Finally, the optimum and extremum problems a r e  of special  interest  for  
multivariable control sys t ems .  It w i l l  be shown that for  a cer ta in  c l a s s  
of s t ruc tu res  noninteraction is equivalent to  optimizing the system with 
respect  to  some quality cr i ter ion.  

The realizability of the invariance conditions also has  some unique 
aspects  for  multivariable control systems.  The invariance conditions 
of multivariable control are realizable only in combined-control sys t ems ,  
where control by deviation (the Watt -Polzunov principle) is implemented 
in conjunction with load control. Fa i r ly  extensive space i s  allotted in this  
book to  the treatment of combined-action control systems.  

is often determined by a generalized cri terion. 

It will be seen from the various sections of this  

W e  have already noted that the quality of a multivariable control system 
The control functions for 

FIGURE 1-4. 
of a multivariable system. 

A generalized block diagram 

each variable should be so  chosen a s  
to  extremize the generalized quality 
index. In some cases ,  l inear  pro- 
gramming provides an effective tool 
for  the development of multivariable 
control systems of this  kind. 
Chapter Eight l inear  programming is 
applied to  find the optimum operating 
conditions of oil wells. We seek to 
maximize the oil production under 
given constraints on equipment and 
operating conditions. Some economic 
index (e .  g., production costs) can be 
adopted a s  the generalized cri terion 
in this  case.  

The multivariable control theory 

In 

is very intimately linked with the problem of efficient design of l a rge  
systems.  However complex the system, it always has  a cer ta in  finite 
number of main outputs, although the re  may be any number of factors  
actively influencing these outputs. 
the process  may be adopted as the generalized outputs. 
point is that even in these complex systems we can always detect the main 
outputs, which are interconnected in a certain way and acted upon by 
additional random disturbances.  On the whole, a complex multivariable 
control system can be represented by some generalized block diagram, 
l i k e  the one shown in Figure 1-4.  

Moreover,  the statist ical  indices of 
The significant 
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And now some history.  The f i r s t  s e r ious  contributions in multivariable 
control theory w e r e  published in the Soviet Union in 1938 / 10, 11 1 .  These 
initial efforts w e r e  entirely concerned with the problem of noninteraction. 
Voznesenskii / 11 / considered the feasibility of providing sepa ra t e  con- 
t ro l l e r s  for  the individual var iables  and setting up such coupling that a 
change in one of the variables would not affect the other  variables.  
noninteraction problem, which Voznesenskii called the problem of 
autonomous control, is solved in 1111 f o r  the case  of a plant where 
each variable is described by a f i r s t  -o rde r  differential equation; ideal 
( iner t ia less)  control lers  a r e  assumed. The followers of Voznesenskii 
have extended the noninteraction conditions t o  more  complex cases  
/ 5 ,  6,  18,  52, 54, 55, 5 9 / .  
problem i s  figured as the main topic in most studies in the field. 

in the USA. 
aspects  of the noninteraction problem, previously t reated by Voznesenskii. 
The application of matr ix  algebra enabled the authors to essentially simplify 
the expressions for noninteraction conditions, without res t r ic t ing the o r d e r  
of the differential equation that descr ibes  each of the controlled variable.  
The studies of Freeman 178, 791, Kavanagh 181, 821, and others  concerned 
with more  elaborate aspects  of noninteracting sys t ems  w e r e  a direct  out- 
growth of the fundamental study of Roksenbom and Hood. 
considered not only noninteraction, but a lso some other quality indices. 
Golomb and Usdin / 80/ developed the theory of multivariable servosystems;  
they introduced the matr ix  of e r r o r  coefficients and derived an explicit 
expression of this  ma t r ix  for  multidimensional servosystems.  

servosystems.  
two-dimensional servosystem and described methods of construction that 
satisfied h i s  optimality t e s t .  
of 115, 83, 84, 851. ThebookbyM. Mesarovifdeservesspecialmention 1851. 
This  w a s  essentially the f i r s t  book in multivariable control theory; moreover ,  
MesaroviE w a s  the f i r s t  to  consider multivariable control as an independent 
problem, and not a s  an outgrowth of the theory of single-variable systems.  
He advanced a number of highly original ideas concerning the applicability 
of variational techniques to  the design of multivariable systems.  

Among the more  recent contributions t o  multivariable control theory 
we should mention the publications of A.A. Krasovski i  1 2 2 ,  2 3 ,  241,  
V.  T. Morozovskii 148, 49, 501, V. A .  Venikov 191, L.V.  Tsukernik 169,  701, 
G. V. Mikhnevich 146, 471,  and others.  Numerous papers  on multivariable 
control sys t ems  have been lately stimulated by r e sea rch  in nuclear-reactor  
control 1 1 2 ,  451. On the whole, however, the multivariable control theory 
is stil.1 a t  the ve ry  f i r s t  s tages  of i t s  development. 

t reated in multivariable control systems.  
the r e a d e r  with an introduction to  the modern t a sks  and problems of 
multivariable control theory and t o  draw the attention of the specialist  
t o  some of the important problems that dese rve  fur ther  study. 

This  

It should be emphasized that the noninteraction 

Boksenbom and Hood were the pioneers of multivariable control theory 
Their  f i rs t  paper 1771  published in 1950 deals  with var ious 

Kavanagh 

Sarachik 1 2 1  / considered some propert ies  of nonlinear multidimensional 
He analyzed in considerable detail the propert ies  of a 

Multivariable control is also the subject 

In writing this  book I did not t r y  to cover the ent i re  range of problems 
My principal a im was to  provide 
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Chapter One 

EXAMPLES OF MULTIVARIABLE CONTROL SYSTEMS 

S: 1.1.  
CONTINUOUS ROLLING 

AUTOMATIC GAGE CONTROL IN 

A functional diagram of a continuous cold-rolling mill  is shown in 
Figure 1.1. 
hot rolling. 

The same  mill ,  but without a coiler,  is used in continuous 

FIGURE 1.1. Schematic of a continuous rolling mi l l .  

The roll  mill  stands are placed sequentially one a f t e r  the other.  
P re s s ing  sc rews  on each stand a l t e r  the position of the top roll  and thus 
adjust the clearance between the working rolls. 
a l tered by changing the roll  gap, as well as by rais ing the rolling tension 
(up to  the yield point). 
simultaneously. In automatic gage control, the pressing sc rews  are 
regulated by a roll  positioning system, whereas the tensile s t r e s s  is 
adjucted by appropriately modifying the main drive velocities. 

It is fair ly  obvious, however, that these two groups of control 
sys t ems  are interconnected through the rolled s t r ip .  A particularly 
pronounced interrelationship is observed in hot rolling mil ls ,  a fact  
which follows f rom various experimental  data. 

The s t r i p  gage can be 

Both these control techniques can be applied 

The effect  of s t r e s s  on 
s t r ip  gage is evident from the bulging 
of the head and the tail  of the piece,  

Figure 1.2 is a block diagram of 
an automatic roll-gap control system 
for  one of the mill  stands. Similar 
systems are provided in each stand. 
Hydraulic dynamometers under the ro l l s  
act  as thickness gages, and looper g e a r s  
between the mill stands measu re  the 
s t r e s s e s  (not shown in Figure 1.2) .  F o r  
the sake of generality it is assumed that 
all  the mil l  stands are equipped with hydraulic 
dynamometers and that s t r e s s  measu re -  
ments are taken between every two stands.  

t where the rolling tension is nil. 

cx G 

FIGURE 1.2. Block diagram of strip 
gage control in  one of the mill  stands. 
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Let  us  consider the general  control relationships for  a rolling mill .  
The equation fo r  the ent i re  mil l  can be obtained by writing the equations 
fo r  each stand with appropriate front and back tensions. yk 

continuous rolling a r e  described by the following relations:  
Corisider the equation of the i-th stand. The physical propert ies  of 

In these equations 
IM,, = the reduced static torque in tension rolling, 
M i ,  = the static torque in tension-free rolling, 

ni = the velocity of the motor ,  

V;  = s t r i p  velocity on entering the stand, 
V i  = s t r ip  velocity on leaving the stand, 
D, = roll  diameter ,  
j = motor- to-rol l  t ransmission ratio,  

HI = s t r i p  gage af ter  the i-th stand, 
Qi = s t r i p  c r o s s  section, 
E = modulus of elasticity of the rolled metal ,  

L,, = interstand distance,  
So = forward c reep  in tension-free rolling, 
6, = forward-creep coefficient. 

f l .  , + I  = interstand tension, 

Under steady-state conditions the s t r ip  en te r s  the i-th stand at  the 

F r o m  the constancy of the per-second volume in rolling we can find 
s a m e  velocity that it leaves the (i- 1)-th stand. 

a dependence of the s t r i p  tension on the main dr ive velocities of the 
nearby stands.  Assuming constant s t r i p  width, we find 

Inserting f o r  Vi and Vi-, their  expressions from (1.2) and solving ( 1 . 4 )  fo r  n i ,  
we find 

The differential equation of motion of the electr ic  dr ive can be written 

375 dt - M i m - M ~ 1  r e s  = M L m - ( M s i - M ; i ) .  ( 1 . 6 )  

in the form 

The moto r  torque MI is found f rom the relation 

A rolling mi l l  as a multivariable plant is considered by N. P. Druzhinin /13/ and A. A .  Fel'dbaum /66/. 



For a Ward -Leonard machine with constant exciting cu r ren t  we find 

(1.8) U i  = Li ~ %+ Rail i  ~ + CeiQini, 

whence 

Substituting (1.9)  in (1 .6 )  we have 

(1.10) 

where 

mi = M S i  - Mi I .  

The resis tance torque depends on a number of factors .  From the theory 
of plastic deformation 1 1 3 1  the p r e s s u r e  on the ro l l s  i s  given by 

P = P [ R i ,  0 1 ,  P,, Fit, Fi,, H,I. H,2, Kilv (1.11) 

where P is a nonlinear function of the relevant p a r a m e t e r s ,  Ri the effective 
rol l  radius,  Hi, the ingoing gage for  the i-th roll ,  HL2 the outgoing gage, 
Fi l  the back tension on the s t r ip ,  Fi2 the front tension, 0, the contact a r c ,  
hi the friction coefficient. 

The rolling torque is a function of the same  var iables  and roll  radius.  
It is expressed by another nonlinear function, thus: 

F o r  small  increments  of the var iables  in (1.11) and (1.12),  assuming 
R‘, R ,  CD, p, and K to be constant, we may  write 

Using lower-case l e t t e r s  for  the small  increments  and constant 
coefficients fo r  the par t ia l  derivatives,  we write 

where 

(1 .15)  
(1 .16)  
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Equations s imi l a r  to  (1.1 5) and (1 .I 6) can be derived fo r  all the mil l  
stands.  
coupling equations which descr ibe the continuous operation of the ent i re  mill .  

We use  the following notation: primed quantities descr ibe the state of 
the ingoing s t r ip ,  lower-case l e t t e r s  denote small  increments ,  and absolute 
values  are represented by capital  l e t t e r s  subscripted with a ze ro .  

(1.16) as 

In addition t o  the individual stand equations, t he re  are also 

The increment of the loading torque in the i-th stand is writ ten f rom 

(1.17) 

the continuity equation is 

The change in s t r i p  tension due t o  e las t ic  deformation is written as 

dfl= c, (Vj+, - VL)’ 
dt (1.19) 

where Ci is a constant. 

the rol l  surface.  
The velocity of the ingoing s t r i p  is higher than the l inear  velocity Vr  of 

It is given by the relation 

(1.20) 

where S is the forward creep,  dependent on s t r i p  tension, So the forward 
c reep  in tension-free rolling. In the l inear  approximation the forward 
c r e e p  as  a function of tension is given by the relation 

S = 6 ( 1  +S,)AF.  ( 1 . 2 1 )  

From (1 2 0 )  and (1.2 1) we have 

(1.23) 

A section of the rolled s t r i p  emerging f rom the given stand r eaches  the 
next stand a f t e r  a cer ta in  t ime lag 

7 4 ,  (1.24) 

where li is the interstand distance, Vi the s t r i p  velocity. Thus,  

hi(i)=hi-i(f--Tt)t (1.25) 
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and making u s e  of (1.25) we wri te  fo r  (1.17) 

and 

Substituting f , ( p )  f rom (1.28) in (1.2'7). we find 

After simple manipulations we have 

(1.27) 

(1.28) 

(1.29)  

(1.30) 

A s  a final s tep in the derivation of the equation of main drive control,  

Loopers are adequate measuring 
we have to choose an appropriate measuring device and to re la te  the 
main drive velocities to  s t r ip  tension. 
devices for  continuous hot-rolling mills.  
can be found from motor  load. 
we a s sume  that a suitable device is available fo r  tension measurements ,  
Then: 

(a) tension between the ( i +  1)-th and i-th stands 

In cold-rolling mil ls  the tension 
Without going into this  technical question, 

(b) tension between the ( i  - 1)-th and i-th stands 

The motor  voltage U ,  ( p )  receives  feedback f rom s t r i p  tension measu re -  
Let Wd(p) be the t r ans fe r  function of the measuring device and ments .  

K,Wg,@)  the t r a n s f e r  function of the generator,  the exciter,  and the amplifier 
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( i f  any); then 

um (P) = wd (P) wg (P) Ka lnrcfi (P) - nl (PI]' 

Substituting (1.31), (1.32), and (1.33) in (1.30), we find 

(1.33) 

We see  f rom equation (1.34) that the process  of control in the i-th 
subsystem, where the controlled variable is ni, is influenced by the 
controlled var iables  of subsystems i- 1 and i + 1. Each of these var iables  
ni-i and ni+i has i t s  own closed-loop control system, 
a r e  described by a set of equations analogous to (1.34) with i= 1, 2,. . . , 6. 

consideration. 
external disturbance o r  load. 
therefore  be considered a s  a load on the tension control system, whereby 
hi is maintained between certain predetermined l imits.  
case ,  when the s t r ip  gage is controlled by simultaneously adjusting the 
tension and the reduction, special control subsystems a r e  provided for h i .  
The number of these subsystems is equal to the number of s tands with 
reduction control. In cold rolling mi l l s  reduction is normally controlled 
in some three  or  four stands, and equations (1.34) a r e  then supplemented 
by reduction control equations. If reduction control is instituted in only 
par t  of the s tands,  hi remain in some of the equations in (1.34) a s  loads. 

In continuous hot-rolling mi l l s  the gage is best regulated by appropriate  
reduction control; the tension should of course be maintained constant. 
Minimum tension is required, but it must be sufficient for  s t r ip  centering. 
The process  of gage control for  a hot-rolled sheet can be investigated 
using equations (1.27), (1.28); these equations a r e  solved for  tension, 
which i s  presumably maintained constant. 

of the pressing screws .  
to both cold and hot rolling mil ls .  

engine, say. Figure 1.2 is a schematic diagram of the rol l -gap control 
system. The input is the reference gap,value Hrer. The equation of the 
measuring device is 

The var ious mill s tands 

One of the components of equation (1.34) - the t e r m  h r -  deserves  special 
If the s t r ip  gage i s  controlled by tension alone, h( is the 

In some instances of cold rolling hi may 

In the general  

Let u s  consider the equations that descr ibe the controlled positioning 
The corresponding equations a r e  equally applicable 

The screw positioning system has an actuator, a Ward -Leonard d. c. 

(1.35) 

The output of the measuring device is delivered to  an amplif ier  and 
then to a generator .  
is written a s  

The equation of the amplifier and the generator  

(1.36) 



Now consider how the motor  runs  when the s t r i p  undergoes reduction. 

G D ~  ' p n  = C rQ) i / I  - M II [, 

The torque equation is 

(1.37) 
375 

but the p re s su re  on the rol ls  and the corresponding resis tance torque 
sensed by the motor  are given by 

M r r i  = Piri eql (1.38) 

where Pi is defined by (1.11); r i e q  is the equivalent a r m  which, together 
with the force P i ,  produces the resis tance torque on the motor.  

By analogy with (1.14), we write 

and equation ( I  .37) takes  the form 

o r  

The screw positioning equations for  the other stands a r e  obtained by 
assigning an appropriate value to  the subscript  i. 
system, i =  1, 2 ,  3. 

the coupling t e r m s  interconnecting equations (1.40) for  i = 1, 2, 3 with 
equations (1.34) for  i =  1 ,  2 ,  3, 4, 5, 6. 

W e  have thus obtained two s e t s  of equations: one describing the positioning 
of pressing sc rews  and the other main drive control. Jointly these equations 
describe,  in the l inear  approximation, the dynamics of gage control by 
simultaneous regulation of rol l  gap and rolling tension. 

For a three-stand 

In equation (1.40), H i  is in a sense Hi-, and Hz=Hi+,.  AFland AF2 are 

5 1 .2 .  A COMPLEX POWER SYSTEM AS A MULTI- 
VARIABLE CONTROLLED OBJECT 

By a complex power system we mean a quite general  configuration of 
power generating stations in a grid of a r b i t r a r y  load. 
individually is a complex system comprising a few o r  even a few dozen 
powerful synchronous generators  and other equipment. 
simplicity each station is replaced in our  analysis by an equivalent 

Each power station 

For the sake of 
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synchronous genera tor  and an equivalent prime mover.  Numerous studies 
146,  47, 69, 70, etc.1 have shown that this  substitution is fully permiss ib le  
in many practically significant ca ses .  It is fur ther  assumed that each 
equivalent generator is excitation-controlled and the equivalent pr ime 
mover  (a  s team o r  hydraulic turbine) is provided with speed control. 
Fur thermore ,  a l l  the machines except the f i r s t  have secondary frequency 
control. Figure 1.3 is a block d iagram of one element in a complex 
power sys tem which compr ises  n equivalent units (p r ime  mover  and 
generator).  
sma l l  deviations of the controlled var iables  f rom a preset  operating mode. 
The active and the reactive impedances in the sys tem a r e  assumed constant 
during each particular transient.  

We will derive an equation of the sys tem f o r  the case  of 

/ /  

transmission 
l i n e  

FIGURE 1.3. An I - r h  unit  of a complex power system 

We s t a r t  with the equations of the various components of the i-th 

1. 
equivalent unit. 

The equation of motion of the i-th equivalent unit is 

(1.41) 

where J i  is the reduced moment of iner t ia  of the unit, A o i  the change in 
frequency, AMi the torque increment.  

res is tance (generator)  torque; we may thus write 
The torque is made up of two components: the actuating torque and the 

A M ,  = A M i i  + A M i a ,  (1.42) 

where AMii is the change in genera tor  torque, AMi.  the change in actuating 
torque. 

The resis tance torques  a r e  expressed  by the functional dependence 

Mi = M i  (bil, bi,, . . ., b i n ,  E d i 1 ,  . . . , E d i , , ,  01, 02, . . ., an) (1.43) 

and 
” “ ” 

AM, i  = - -$$ Abik - 2 A%,, - 2 Amh, (1.44) 
k = l  k = 1  k = l  

where 6 i k  a r e  the phase angles between the free-running e. m.  f. of the 
k-th genera tor  and the voltage developed by the i-th genera tor  (which is 
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regarded a s  the leading generator) ,  Edi is the free-running e. m. f.  of the 
i-th generator ,  A o h  is the change in frequency for  the k-th generator .  If 
the f i r s t  genera tor  is regarded as the leading generator ,  the phase angles  
in the equation for  any i-th genera tor  should be reckoned f rom the e. m.  f .  
vector  of the f i r s t .  

charac te r i s t ics .  
making use of (1.42) and (1.44), we write (1.41) in the form 

All par t ia l  der ivat ives  in (1.44) a r e  found from the corresponding static 
Replacing them with appropriate  constant coefficients and 

o r  

Here 

2. The equations for  the phase angles  bik a r e  

Abik = 1 (Bo,  - Amk) d t  

o r  
= A q  - Amk. 

dt (1.46) 

Equation (1.46) c lear ly  remains  valid when the e .m. f .  vec tors  of all  the 

3. 
machines a r e  reckoned f rom the e. m. f .  vector  of the f i r s t  machine. 

assumed that the synchronous generator  is excited by a special exci ter .  
The fast  electromagnetic processes  in the s ta tor  circuit  of the synchronous 
generator  a r e  ignored a t  th i s  stage. 

The t ransient  in the ro tor  circuit  of the i-th generator  is descr ibed by 
the following differential equation: 

We now derive the equation of the moto r ' s  excitation circuit .  It is 

= + T f d O  7 d E ; d  * (1.47) 

where Tido is the t ime constant of the excitation circuit ,  € i d  is the e .m . f .  
a c r o s s  the synchronous react ive impedance. 

genera tors  Eide depends on the pa rame te r s  of the excitation circuit ,  the 
exc i te r ,  and the voltage control system. For small  deviations eqiation 
(1.47) takes  the form 

If no voltage control is provided, Ecde is constant. In voltage-controlled 

(1.48) 
d AE;, 

A E l d r r A E f d +  T i d O T '  

4 .  Let Woi(p) be the t r ans fe r  function of the exci ter  and voltage controller. 
The relationship between AE!dr and the change in voltage at the generator  
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t e rmina ls  is then written as  

*€,de (P) = wOl (P) Aug (PI. (1.49) 

The voltage at the generator te rmina ls  is measured, and not the free- 
Another expression is therefore required,  relating the running e. m. f .  

free-running e. m. f.  to  the voltage at the terminals .  

49 Id 

FIGURE 1.4. Vector diagrams of a synchronous machine. 

F rom the vector diagram (Figure 1.4) we may write 

(1.51) 

Here xid is the transient rea.ctive impedance of the generator,  X i d  the 
reactive impedance of the generator along the longitudinal axis,  x i q  the 
reactive impedance along the t r ansve r se  axis,  l i d  the longitudinal component 
of the s ta tor  current ,  li, the t r ansve r se  component of the s ta tor  current .  

We further assume for the sake of generality that the generator being 
considered i s  a salient -pole machine; then for the current  components 
we write::: 

(1.52) 
‘Ql ‘I d I , ,  = z,I cosaii - -cos (- a,, - a,,), 

21 I 

(1 .53 )  - ‘Qi I , ,  = z,, sin a,, + - ZII sin (- ail - all). 

Here  EQi is the equivalent e.  m.  f .  of salient-pole generators :  

EQi = AE,, + BE,, cos (- 6,, - all). (1.54) 

The constants A and B a r e  expressed  in t e r m s  of the genera tor  parameters :  

Detailed derivation of these equations is given, e. g.. in /41 .  691. 
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where 
and the 1st generator  (F igure  1.5), Z,, is the mutual impedance of the 
sys tem between these  generators .  

is the self-impedance of the substitution circui t  between the i-th 

FIGURE 1.5. Diagram of impedances. 

Substituting (1.52), (1.53), and (1.54) in (1.50) and (1.51) and l inearizing, 
we find a f te r  s imple manipulations 

AEid = V ,  Ab,, + Qi A€,, ,  
AU, = L, Abil + N ,  AE,,, 

(1.55) 
(1.56) 

where 

x .  - X i d  
Vi = 1 --+ Acosa , , ,  

B cos ail 1 
Qi =   id - &) ~ 1 0  (7 - T)  s in  (- bii - a d  

UIO 1 L, =--- E , d s i n ( - 6 1 , - a a , , ) [ 2  --- 
Zll 

2uio I 
ZAX?, cos ail ( B cos ai ,  I - 

B cos a i r  + sin 2 ( -Ai l  - a , l )  [ ~ ‘;f9 - u10x3d (7 - $)] } ’ 
A2 aii + - cos aiix:d 
z:, 

B cos aii 1 - u,, cos (- bi, - a i l )  (- Z i t  - - z,,) ( 2 X l d - 2 2 x ? d y ) ]  ’ 

The equation of speed and frequency control fo r  the i-th generator  is 5. 

A I I ~  =Ri ( p )  Ami. (1.57) 

We have thus obtained the following set of equations describing the i-th 
generalized unit: 

” “ 
( J # + Y j i ) & =  - 2 a i k A b i k - x  ~ i k A E k - Z Y , r A m k + A M I a ~  k = l  (1.58a) 

k - 1  k = l  
k + l  
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(1.58b) 

These equations cannot be simplified unless we have decided what the 
controlled var iables  of the system are. As far as the quality of the generated 
electr ic  power is concerned, the frequency and the voltage must  be 
maintained constant. In some cases ,  however, stability considerations,  
say,  suggest that the phase angle d i k  should be controlled. 
is a l so  advisable if the voltage of the generalized units (power stations) 
is controlled via the phase angles d i h  using remote phase m e t e r s .  The 
controlled var iables  are therefore  the frequency w l ,  the phase angle A d i k .  

the generator  voltage U1, the e. m. f .  of all other generators  E,,, and the 
frequency of the other generators  o,(k # i )  . 
equations for  the i-th unit: 

This  approach 

Eliminating €id, E z d ,  and from (1.58), we obtain the following set  of 

(1.59) I 
Similar s e t s  of equations can be obtained fo r  the other generalized units 

of the complex power system. 
equations (1.58) with i =  1, 2 , .  . . , n. 
voltage control, the corresponding t e r m s  vanish. 

generator  voltage (o r  e. m .  f.) is sensit ive to  variations of frequency and 
speed. 
But the coupling goes fur ther :  the p rocesses  in the i-th unit affect all the 
other  units of the power system a s  a whole. 

The ent i re  power system is described by 
If some units have no frequency o r  

The coupling in this  ca se  is twofold. F i r s t ,  in each individual unit the 

Each unit thus consti tutes a multivariable interacting system. 

§ 1 . 3 .  A RECTIFYING COLUMN 

A rectifying column is a v e r y  common installation in petrochemical 
and gas  industries.  
typical multivariable plant representat ive of a whole class of industrial  
p rocesses  adapted t o  automatic control. 
discussion of some elementary propert ies  essent ia l  for  the understanding 
of the physical foundation of the rectification p rocess  and then give detailed 
mathematical  t reatment  of some s imple cases .  

F r o m  o u r  point of view a rectifying column is a 

We therefore  proceed with a 

Although the re  is a 
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considerable var ie ty  of rectifying columns, they all operate  on the same  
principle and can be described by identical mathematical  equations. 

Rectification is a kind of distillation, i. e., separation of a liquid 
mixture  into constituents which have different boiling points. Rectification 
is ca r r i ed  out in such a way that an ascending s t r e a m  of vapor comes  in 
contact with a descending countercurrent of condensed liquid, i. e., the 
base of the column is heated while i t s  upper portion is cooled. 
diagram of a rectifying column is shown in Figure 1.6.  

A schematic 

6 
1 

FlGURE 1.6. 
binary mixture: 

I column, 11 condenser, 111 accumulator. IV reboiler; 
1) crude feed. 2) overhead product, 3) bottoms, 4) vapor, 
5) reflux, 6) vapor-liquid mixture, 7) vapor phase, 
8) liquid phase, 9) water, 10) gas out. 

A rectifying column for the separation of a 

The main element of a rectifying column is the packing, namely plates 
o r  t r a y s  on which the vapor comes  in contact with the liquid phase. 
vapor is thus enriched with the low-boiling component, and the proportion 
of the high-boiling component in the liquid a l so  increases .  
diagram of a bubble -cap plate is shown in Figure 1.7. 

The 

A functional 

4 

FIGURE 1.7. 
lion process: 

1) column wall, 2) plate, 3) cap,  4) liquid, 5) vapor. 

Functional diagram of the rectiflca- 
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Depending on the composition of the crude feed, we distinguish between 

The calculations fo r  multicomponent rectifying 
columns fo r  separation of binary mixtures  and columns for  separation of 
multicomponent mixtures .  
columns are substantially more  complicated, and the corresponding 
p rocesses  have been poorly studied. 

(a) COLUMNS FOR SEPARATION OF MULTICOMPONENT MIXTURES 

A b i n  a r y column is that where the finished product is only the overhead 
disti l late o r  the bottoms. 
be implemented with due regard to  the industrial  objectives and the 
engineering a spec t s  of the process .  The following cases  can be distinguished. 

than permissible.  

much of it a s  is feasible,  i r respect ive of power requirements .  

power consumption. 

determined by power lo s ses  f rom cooling water and vapor.  

Uniform product efflux. 

excessive fluctuations of product discharge a r e  undesirable.  

and quantity. 

Figure 1 . 6  are shown to f i r s t  approximation in Figure 1.8. 
of the input var iables  in Figure 1.8 are interrelated.  Fo r  example, a change 
in the quantity of feed affects the condenser operation and the reflux t emper -  
a tu re  is altered; a change in the pumping rate  of the overhead product 
a l t e r s  the quantity of reflux, e tc .  

Automation of binary rectifying columns should 

C a s  e 1 . Product concentration higher than required.  Losses  less 

The goal is t o  make the product a s  pure as possible and to produce a s  

C a s e 2 . Product concentration higher than required.  Optimum 

A very-high-purity product is to  be separated,  but i t s  quantity is 

C a s  e 3 . Product concentration not lower than the stipulated figure. 

The disti l late constitutes a feed to  another industrial  process ,  so that 

C a s  e 4 .  Optimum economy irrespect ive of product concentration 

The input and output var iables  of the rectifying unit i l lustrated in 
Note that some 

- 77 

FIGURE 1.8. 
in a binary column: 

1) quantity of feed, 2)  composition of feed, 
3) temperature of feed, 4) reflux flow rate. 
5) reflux temperature, 6) pumping of overhead 
Droduct, 7) pumping of bottoms, 8) water flow 
rate in the condenser. 9) vapor flow rate in the 
reboiler. 10) top plate  temperature, 11) bottom 
plate temperature. 12) k-th plate temperature. 
13) composition of overhead product, 14) com- 
position of bottoms, 15) composition of mixture 
on the bottom plate, 16) liquid level in the 
accumulator, 11) liquid level in the reboiler. 
18) pressure in the column. 

Schematic diagram of the variables 
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A simple rectifying unit f o r  the separation of binary mixtures  is thus 
a multivariable plant with numerous inputs and outputs. 
tion of the column requ i r e s  knowledge of the relationships between the inputs 
and the outputs shown in Figure 1.8. 

One of the main paths is the "feed composition-to-product concentration". 
Analytical and experimental  (using laboratory rectifying units) studies of 
this  path were published by var ious authors  1 8 3 ,  841.  

The equation of each plate is derived proceeding from the ma te r i a l  
balance of the low-boiling component. 
the fo rm 

Complete descr ip-  

Under certain assumptions i t  h a s  

( T k p f  ~ l k C k - I + ~ 2 k C k + l *  (1 .60 )  

where k is the plate number,  K~I,,  KZk the gains, T k  a t ime constant, c k  

concentration deviation of the low-boiling component on the k-th plate. 
The equations of the condenser,  reboiler,  and feed plate differ only 

in the number of t e r m s  entering the right-hand side of (1 .60) .  
constants T k r  K l k ,  and K 2 k  depend on the velocity of vapor and liquid s t r eams ,  
the form of the equilibrium curve interrelating the composition of the vapor 
and the liquid phase on each plate, and the liquid m a s s  on the plate. 

This  omission is rectified with the aid of the equations 

The 

Equations (1.60) ignore the hydrodynamics of vapor and liquid s t r eams .  

(1.61) 

where v k  is the flow ra t e  of vapor r is ing from the k-th plate, L h  the flow 
rate  of liquid dripping from the k-th plate, TI and r2 are the corresponding 
t ime  constants of the k-th plate. 

Putting k = 1, . . . , n ,  we obtain a set  of equations for  this  simple binary 
column. 
f rom the mater ia l  balance of one of the components. 

We wish t o  s t r e s s  again that the equations were obtained proceeding 

(b) COLLlhlNS FOR SEPARATION OF BINARY hlIXTURES 

Rectifying towers  for  fractionation of petroleum products a r e  much more  
difficult to  control than the previously considered simple binary columns. 
A s  we have noted, distillation in binary columns is mostly described by 
th ree  inequalities : 

(1.62) 

where Cbr is the content of the bottoms component in the overhead distillate, 
C r b  is the content of the overhead product in the bottoms, D the separation 
factor.  
c o r r e  sponding quantitie s. 

The subscript  3 denotes the standard reference values of the 
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A vacuum distillation column for  multicomponent mixtures  is described 
by considerably m o r e  numerous constraints.  
are the following: 

The m o r e  obvious of these 

(1.63) 

where T l b  is the lower boiling t empera tu re  of the fraction, Trb is the end 
boiling temperature ,  Gashthe flash-point temperature ,  V the viscosity of 
the fraction, C the color  of the fraction, D the separation factor.  

Th i s  set  of constraints is of cour se  applicable to  each withdrawn fraction. 
A character is t ic  feature of a vacuum distillation column f rom the point 

of view of a control engineer is that i t s  optimum operating conditions a r e  
character ized by a generalized index which is a functional of numerous 
controlled var iables  ( reference values and other  quantities). Optimal 
reference values a r e  determined by the industrial  plant conditions. If 
the disti l late is a marketable product, optimization is impossible without 
knowing the dependence of cost and market  pr ice  on product composition. 

If the dependence of profit on product composition is a function with an 
An optimality t e s t  is provided, say, by the profit amassed in t ime  T .  

FIGURE 1.9. 
component mixture: 

I column. I1 accumulator, 111 barometric 
condenser; 1) feed, 2) superheated vapor. 3) 1st 
fraction. 4) 2nd fraction. 5) 3rd fraction. 
6) bottoms, 7) reflux, 

Column for separation of a multi- 

extremum, the column is optimized if  
a maximum profit is ensured. 
dist i l late r equ i r e s  fur ther  processing 
before  it can be marketed,  we must  
know the relationship between disti l late 
composition and the cost of subsequent 
processing. 
constraints (1.63) constitute only the 
f i r s t  s t ep  in the development of optimum 
control sys t ems  fo r  rectifying towers .  
However, in general ,  a s  the constraints 
(1.63) approach equalities, the operation 
of the column under the given set  of 
conditions becomes progressively more  
economic. 

i s t i c s  of the column a r e  required for  the 
solution of the problem before us.  
what follows we der ive an equation relating 
the m a s s  flow of the feed and the product 
to  temperature  conditions in the column. 
This  statement of the problem is under- 
standable since in most rectifying towers  
t empera tu re  is one of the controlled 
variables.  

If the 

It is thus c l e a r  that 

The s ta t ic  and the dynamic cha rac t e r -  

In 

A technological diagram of the column 
is shown in Figure 1.9. 
and the residuum. 

The tapped products a r e  the 2nd and 3rd fract ions 
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The automatic control of these columns constitutes a complicated problem 
With binary columns no m o r e  than two or three  constraints  had t o  be sa t i s -  
fied (e.  g., concentration g rea t e r  than re ference ,  losses  l e s s  than reference), 
while in vacuum distillation columns the number of constraints  is much 
grea te r .  

The five principal constraints  for  each fraction a r e  the following: 
1. 
2 .  
3. Viscosity l e s s  than reference.  
4. 
5. Color s t ronger  than reference.  
The "controllability" of the column thus becomes a very  topical question. 
The interrelationships between the column inputs and outputs a r e  

Lower boiling point higher than reference.  
End boiling point less than reference.  

Flash-point tempera ture  higher than reference.  

indicated in Figure 1.10, which shows only the most important var iables .  
Block d iagrams of the rectifying tower a r e  given in F igures  1.11 and 1.12. 

FIGURE 1.10. 
component column: 

1) feed flow rate, 2) feed temperature, 3) feed viscosity. 
4) reflux of 2nd fraction, 5) withdrawal of 2nd fraction, 
6) reflux of 3rd fraction, 7) withdrawal of 3rd fraction, 
8) vapor flow rate, 9) lower boiling p i n t  of 2nd fraction, 
10) end boiling point of 2nd fraction, 11) viscosity of 2nd 
fraction, 12) flash-point temperature of 2nd fraction, 
13) color of 2nd fraction, 14, 15, 16, 17, 18) ditto for 
3rd fraction, 19) temperature of 2nd fraction, 20) temper- 
ature of 3rd fraction. 21) tempeIaNre on k-th plate, 
22) liquid level in the accumulator, 23) bottoms quality. 

Illustrating the inputs and outputs of a multi- 

G O  

FIGURE 1.11. Illustrating the derivation of equations 
for a multivariable column. 

FIGURE 1.12. Illustrating 
the derivation of equations 
for a multivariable column. 
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Nomenclature : 

G,, Q,, 0, = the withdrawn quantities of each fraction; 
OM, 00-2 = the quantities of reflux for  the corresponding fractions; 

G,= gas flow into the barometr ic  condenser; 
k = plate number,  reckoned f rom bottom to  top; 
MI= number of plate from which the fraction is withdrawn; 
N , =  number of the reflux plate; 

Xinl  = deviation in m a s s  flow of feed; 
XI,, = deviation in tempera ture  of feed; 

X,= deviation in tempera ture  of liquid phase on the k-th plate; 
h, = liquid level deviation on the k-th plate; 
1, = t empera ture  of liquid phase on k-th plate; 
T, = t empera ture  of vapor phase on k-th plate; 
t % l =  t empera ture  of reflux; 
Lk = flow of liquid dripping from k-th plate; 
v, = flow of vapor rising f rom k-th plate; 
clq = slope factor of the straight line approximating the temperature 

c, = slope factor of the straight line approximating the tempera ture  

m = m a s s  of liquid on the plate; 
H = level of liquid on the plate; 
F = accumulator surface area;  
D = column diameter;  
p = liquid density; 
6 = symbol of deviation. 

dependence of the specific heat of liquid; 

dependence of the specific heat of vapor; 

Assumptions adopted in the derivation of equations 

The feed i s  liquid at  i ts  boiling point. 
Tempera ture  variation on the plates does not affect the velocity of 

Vapor and liquid tempera ture  deviations on the k-th plate a r e  

1 .  
2. 

3 .  
the vapor.  

related by 

bTk = k btk.  

4. 
5. 
6 .  
7. 

8. 
9. 
In the mathematical part  we use the well-known equations of heat balance. 
We consider several  cases .  

Total condensation occurs  on plate N, ( G,= 0). 
The delay of the vapor on the k-th plate is negligible. 
Change in level i s  negligible on al l  plates, except MI. 
LM,= 0, since in this column the downpour from the 20th plate is 

The effect of water s team flow on column tempera ture  is negligible. 
The hydrodynamics of the liquid i s  ignored. 

quenched. 
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C a s  e 1 . 
The equation of statics (steady-state conditions, see Figure 1.13) can 

The equation of the k-th plate. 

be written in the following form: 

v k - l c v T k - l - V k c , T k  f L k + l c l q t k + l -  Lkciqtk =O* 

where A = mcl4. 

FIGURE 1.13. Illustrating 
the derivation of equations 
for a multivariable column. 

Seeing that the liquid flow in the given section may change only due to a 
change in the quantity of reflux, wc may write 

6Lk=6Lk+,=6Lk- i  - x,,,. 
In view of assumption 3 above 

6Tk = k 6tk - kX,. 

Passing to  an equation in deviations, linearizing, and Laplace- t rans-  
forming, we find 

( a k P +  ~ ) X , = ~ , X ~ - , ~ C C P X ~ + I + ~ S ~ X L ~ ~ ,  (1 .64)  

where 

the t ime constant of the k-th plate, A 

C"kVk-1 

ak C &  + c , k v k  

nondimensional gain fact o r  s , 

dimensional gain factor.  
I bk = ciqLk + C,kVk ' 

- c14Lk+I 
- CiqLk -t CvkVA 

- c I  ( t k i - l  - f k )  - C&k + CvkVp 

Equation (1 .64 )  is sometimes conveniently rewrit ten a s  

( 1 . 6 5 )  
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FIGURE 1.14, Illustrating 
the derivation of equations 
for a multivariable column. 

Acting as before and seeing that 

6ta.z - X n 3  

we find 

where 

C a s e  3 .  The equation of the M,-th plate (Figure 1.15). 
The equation of dynamics: 

(1.66) 
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FIGURE 1.15. Illustrating 
the derivation of equations 
for a multivariable column. 

Acting as before and seeing that 

and 

we find 

where 

C a s  e 4 . 
The equation is derived precisely as in Case 1. 

The equation of the k-th plate (MP > k > M 3 ) .  
Seeing that 

(1.67) 

(1.68) 
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I 

FIGURE 1.16. Ill iistra ting 
the derivation of equations 
for a multivariable column. 

Passing to  the equation in deviations, linearizing, and Laplace- t rans-  
forming, w e  make use  of the fact that 

and 

to  obtain 

ClqtM,FPPh t [AP +(% + G,) C l q +  V,,?"k] XM, = 

v M , - l c ~ ' x M , - l  + L M t + l C l q X , l l , t l  + 'lq ( '# ,+1  - ',%.f,) 1 - t.w,clqXin 2. (1 * 69) - - 

The equation of mater ia l  balance fo r  this plate i s  

FpPh =- Xi" 2 9  (1.70) 

i. e.,  equation (1.68) in fact is a combination of two independent equations, 
(1.69) and (1.70): 

[AP 4- (Gal + GI) clq + VM:"kl X M ,  = 
- - v M , - 1 c V k X , v , - 1  + L M , + ~ C , ~ X M , + ~ + ~ M  ( t M , + i - t t M , ) X i n  1' (1.71) 

F rom (1.69) and (1.70) it follows that the liquid level in the accumulator 
i s  independent of temperature ,  and the withdrawal of the disti l late does 
not affect  the temperature .  
equations; the validity of the s tar t ing l inearized equation, however, 
r equ i r e s  experimental  verification. 

cases (1.64)-(1.69). 

equation of the k-th plate may be written a s  

These conclusions follow from the l inearized 

The equations for the other  plates a r e  derived s imilar ly  to  one of the 

An analysis  of the equations of various plates has  shown that the general 

(1.72) 

Some of the coefficients in (1.72) may be zero.  
The coefficients in (1.72) a r e  the following: 

a -  A the plate t ime constant, Q k  being the  total  flow of liquid ' - fiqQk + f vkVk'  

f rom the plate; 
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I c,k'Jk- I 

b k =  c i q Q k + c v k v k  ' nondimensional gain f ac to r s  taking into account the 
c - ' I q L k + I  temperature  of the overlying and underlying plates; 

,+ - CiqQk + +'Jk 

k l k ,  ksh are coefficients corresponding t o  the effect of the reflux m a s s  

(a) 
flow; the coefficients k i k  ( i =  2 ,  3) a r e  defined by the following relations:  

for  the plate receiving the reflux 

(b)  for  any plate in the reflux section, including the plate from which 
the disti l late is withdrawn, 

( c )  for  other plates k i h =  0; 
k;k and kjk a r e  coefficients that allow for  the effect of reflux temperature;  

(a) for  the sprinkled plate 
the coefficients k;k ( i =  1,  3) a r e  defined by the following relations:  

(b)  for  other  plates k : k =  0;  
kql, and k 5 k  a r e  coefficients that allow for  disti l late outflow; the coefficients 

k , s  ( i  = 4,  5) a r e  defined by the following relations:  
( a )  

(b) fo r  any underlying plate k i ,  = ~ 1 4 ~ , r c ~ ~ ~ ~  . 

Dividing the lef t -  and the right-hand s ides  of (1.72) by ( a / $ +  l ) ,  we find 

for  the plate from which the disti l late is withdrawn k , k =  0; 
ciq  ( t k  - f k i  1) 

P k X k - l + X k - t ( S k X k + l = Y L k X i n  l$-Y;kX.n  1 f Y B k X i n  3 +  

-k Y i h X * n  3 y4kxin 4 + 1'5k*in 5' (1 .73)  

The equation relating the var ious column variables  is then written a s  

B .  x= Oxi , ,  

where B and D a r e  ma t r i ces ,  

B= 

. . . . . . . . . . . .  Bz, 1 

. . . . . . . . .  p2, 1 a23 

. . . . . .  pZ2 1 az2 . . .  

... p3 I (73 . . . . . .  
p2 1 o2 . . . . . . . . .  

. . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  
l a  , . . . . . . . . . . . .  

(1.74) 
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D =  

and xi, are column vector 

- 
X =  

0 0 0 0 0 . . . . . . . . . . . . . . . . .  
Y,,,, 0 0 0 0 0 

0 0 Y , , , , O  0 0 

0 0 Y , , , , O  0 0 
0 0 0 0 Y4,,4 0 

Y3,19 $,I9 

. . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  
'4.10 y5.10 . . . . . . . . . . . . . . . . .  

- 
and X , ,  = 

§ 1.4. OIL STRATA WITH LINEAR SEEPAGE 

From the point of view of multivariable control, oil fields have much 
in common with the controlled objects discussed in the previous sections. 
Anticipating, we can say  that the common feature f o r  these multivariable 
objects i s  that quality is regarded as a generalized index dependent on a 
variety of factors  and numerous constraints,  so  that the control problem 
is reduced to  extremizing some functional. It will be  shown in Chapter Eight 

that ,  under cer ta in  additional conditions, 
the control of an oil field can be reduced 
to extremization of a l inear  form. 

Crude oil i s  a mixture of solid, liquid, 
and gaseous hydrocarbons impregnating 
a porous medium. If a well is sunk in 
this  medium, the s t r a t a l  p re s su re  will 
drive the crude oil to the surface.  

p re s su re  in the production well, water is 
pumped into the r e se rvo i r  through so- 
called injection wells which ensure what 
is known a s  secondary recovery of oil. 
Figure 1.17 is a schematic diagram of an 

I n  plan 

A 

ction along A - B  In o r d e r  to  maintain sufficient s t r a t a l  

Bottom 

FIGURE 1.17. Schematic diagram 
of a n  oil reservoir. 

- 
oil reservoir .  The output, o r  controlled 
variable for  each i-th well is the quantity 
of liquid Qi produced. Note that the well 
may produce s t r a t a l  water as well as oil,  

and the yield therefore  does not provide an unambiguous quality cr i ter ion 
of wel l  operation. The problem of efficient working of an oil field w i l l  be 
considered in Chapter Eight. 
of the r e se rvo i r ,  taking Q ,  a s  the well output. 

Here we wi l l  only der ive the control equation 
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The oil field may  have two operating modes: 
(a) e 1 a s t i c , when the p re s su re  at  any point in the pay rock is a 

function of t ime,  other conditions being constant. 
ar is ing immediately a f t e r  a cer ta in  disturbance is applied to  the pay, 
e .  g., when the well is stopped; 

(b) r i g i d , when the p r e s s u r e  at  any point is constant during a certain 
t ime interval,  being dependent on the position of that point only. 

In the general  ca se  of e las t ic  o r  rigid conditions, one of the main 
problems of the theory is to  determine the p r e s s u r e  at  any point in the 
oil-bearing s t ra tum and at  the face of the well a t  any time; the s ize  and 
the physico-geological character is t ics  of the field a r e  assumed to be known. 

It i s  shown in the l i terature  172, 75, and o the r s /  that the general  behavior 
of an oil r e se rvo i r  is described by the following partial  differential equation: 

This is a transient mode, 

where P is the s t r a t a l  p re s su re ,  h the thickness of the s t ra tum, k the 

permeability, p the viscosity of the medium, u2 =- * is the 

storage coefficient of the s t ra tum, o r  the so-called p i e z o p e r m. e a b  i 1 i t  y , 

k where vv ’ 

Y - R  kh  - hyd is the hydraulic res is tance of the medium, F ( x , y , z )  a discontinuit:y 

function, which is identically ze ro  at  all points of the r e se rvo i r ,  with the 
exception of the points a t  which wells a r e  sunk. 

aP For  the rigid mode = 0 and (1.75) takes the form 

(1.76) 

The problem can be simplified if planar conditions a r e  assumed, i. e., 

The flow of liquid along the z axis  can be ignored so that 
the thickness of the oil s t ra tum is regarded a s  smal l  in comparison with 
i t s  extent. 

g= 0. Equations (1.75) and (1.76) thus take the form 

and 

With boundary conditions of the f i r s t  kind the p re s su re  

Pb = f ( x ,  y, 2) 

on the boundary i s  constant, and the p re s su re  drop  is thus zero,  

AP,=O; 

(1.77) 

(1.78) 

(1.79) 
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alternatively, the r a t e  of change of the p re s su re  d rop  on the boundary is z e r o  
(boundary conditions of second kind), thus: 

The l a s t  ca se  corresponds to  a closed oil r e se rvo i r .  
Solving equation (1.75) o r  (1.77) fo r  appropriate boundary and initial 

conditions, we obtain the debit Q as a function of p re s su re .  The problem 
thus reduces t o  finding P = F I  ( x ,  y, z, I)and Q = F * ( x ,  y. z, t ) .  
conditions the debit of the well can be expressed by the following relation, 
which is in fact the Darcy law of filtration: 

For various producing 

Q=- b P  
R ( x .  Y. 2) ' (1.80) 

where R ( x ,  y, z )  is the equivalent res is tance to liquid flow in a p r e s s u r e  
gradient A P .  

1 If for  the f i r s t  well -- R ( X ,  y. z )  -a , , ,  and the re  a r e  no other  wells, equation 

(1.80) takes  the form 

Consider the case  of an oil r e se rvo i r  with n production wells.  A change 
in operating conditions in any of the wells causes  redistribution of p re s su re  
in the ent i re  field. For the rigid mode, the behavior of the field i s  described 
by the equations 

(1.82) 

where aij is a coefficient that descr ibes  to  what extent the p rocesses  in the 
i-th well influence those in the j-th well. 
behavior of an oil r e se rvo i r  in the rigid mode from the standpoint of multi-  
variable control theory. 

In the elast ic  mode the s t r a t a l  p rocesses  a r e  described by convolution 
integrals.  
tion of rigid operating conditions, and equations (1.82) a r e  thus quite 
sufficient. 

Equations (1.82) descr ibe the 

In what follows, however, we a r e  only concerned with optimiza- 
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Chapter Two 

M U L T I V A R I A B L E  CONTROL SYSTEPLS 
WITH BASIC E L E M E N T S  

S 2 . 1 .  INTRODUCTORY REMARKS 

In this chapter we consider automatic control sys t ems  where each 
single-variable loop is built of basic elements only. 
we mean 1391 the controlled object o r  plant, the measuring device o r  
t ransducer ,  the controller o r  regulator and, in general ,  a number of 
amplifiers.  
variable,  and schematically they a r e  represented by single-loop diagrams.  

As we have previously noted, the relationship (or coupling) between 
controlled variables in multivariable systems may be attr ibuted to the 
peculiar properties of the controlled plant. 
controlled variables a r e  interrelated through the controlled object ( o r  
through i t s  propert ies) .  
var iables  a r e  plant-coupled. The relationship between the controlled 
var iables  may be also art if icially introduced by means of t r ansduce r s  
or  control paths; finally, some interrelation may be imposed by the 
technological o r  production process .  
v a r i a b l e  c o n t r o l  s y s t e m s  (MCS) is understood in the quite general  
sense of sys t ems  with interconnected variables,  i r respect ive of the 
par t icular  mode of coupling. 
we see  that the number of control lers  o r  regulators  is not always equal 
to the number of controlled variables.  If the controlled var iables  a r e  
regarded a s  the plant outputs and the controller coordinates a s  the inputs, 
we may a s sume  quite generally that the number of outputs is l e s s  than 
o r  equal to the number of inputs. 
sys t ems  with single-loop subsystems should provide a foundation for  the 
design of effective control sys t ems ,  a problem of obvious practical  
importance.  
process ,  we shall  f i r s t  consider the propert ies  of multivariable plants. 

A multivariable plant may take on two fairly general  alternative 
configurations shown in F igu res  2.1 and 2 .2 .  
the t r ans fe r  functions for  two controlled var iables  only a r e  shown. 
the sequel the par t icular  r e su l t s  for  the two-variable system will be 
generalized without difficulty to any number of controlled var iables .  
We do not consider here  the case  when the output of the coupling element 
W i k ( p )  i s  delivered neither to the input nor to the output of the element 
with the t ransfer  function W i , ( p ) ,  but to some intermediate point, since 
it is easily reduced to one of the principal ca ses  by a simple modification 
of the function W i k ( p ) .  

By basic elements 

Simple sys t ems  of this kind a r e  designed for  each controlled 

In this ca se  we say  that the 

An alternative way of saying i t  i s  that the 

In what follows, the t e r m  m u l t  i - 

From the examples considered in Chapter One 

Study of simple multivariable control 

In o rde r  to simplify the mathematical  description of the 

F o r  the sake of simplicity, 
In 
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We now proceed to  derive an equation fo r  the f i r s t  controlled variable 
Y l  out in cases depicted in F igu res  2 . 1  and 2 . 2 .  For F igure  2.1 we have 

A s imi l a r  equation can be  written fo r  the second channel. 
consider the second case, that in F igu re  2.2:  

Let u s  now 

If the number of controlled var iab les  is not two but n, the equation for 
the i-th controlled variable in the f i r s t  configuration is 

Yi out (P) = Wii (PI Xi (PI - Wit (PI Z Wi, (PI Y, out (P), ( 2 . 3 )  ;;: 
and the output of the second configuration i s  

y i  out (P) = wii (P) x i  (P) + 2 wik (PI x,4 in (PI. (2 .4 )  
k =  1 
k # i  

The difference between the two alternatives i s  the following: in the 
f i r s t  configuration the i-th output is dependent on the i-th input and the 
outputs of a l l  the o ther  controlled var iab les ,  whereas  in the second 

FIGITRE 2.1. 
coupling. 

A plant with crocs FIGC'RE 2.2. 
coupling. 

A plant with direct 

configuration the i-th output i s  a function of the i-th input and all the o ther  
inputs. 
second by  a cer ta in  modification of the t ransfer  function W i k ( p ) .  A s  we 
have not imposed any res t r ic t ions  on the form of the coupling t ransfer  
function, we will consider the f i r s t  configuration only (a  system with 
c r o s s c o u p  1 i n  g ) ,  using the genera l  symbol aik ( p )  for  the coupling 
coefficients. In the case  of c r o s s  couplhig, we obviously have 

It i s  easi ly  understood that the f i r s t  ca se  can be  reduced to the 
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and for  direct  coupling (Figure 2 . 2 )  

The controlled var iables  a r e  often interconnected simultaneously by 
both direct  coupling and c r o s s  coupling. This,  however, does not a l t e r  
the s t ructure  of equation (2 .4 ) .  It is only the function a i , , (p )  that changes. 
This  approach to plant equations is justified because in practice the 
controlled object is fixed from the s t a r t  and we are not free to change 
i t s  s t ructure .  
is to choose the optimum structure ,  and one does not generally s t a r t  
with equations of known form.  In the sequel we therefore concentrate 
on m e t h o d s o f s e 1 e c t i o n  of control-system s t ruc tu res .  

As r ega rds  the control system, the a im of the designer 

9 2 . 2 .  
CONTROL SYSTEMS WITH BASIC ELEMENTS 

TRANSFER FUNCTIONS O F  MULTIVARIABLE 

Consider a multivariable control system with n controlled var iables  
interrelated through the controlled object. 
element components is provided for  each of the controlled var iables .  

A subsystem made of bas i c -  

FIGURE 2.3. 
system with basic elements. 

A general block diagram o f  a multivariable control 

(a) We as sume  that the measuring elements ( t ransducers)  a r e  a lso 
interrelated (the case  of load coupling will be considered under (b)) .  
Figure 2 . 3  is a block diagrarn of the subsystem f o r  the k-th controlled 
variable.  The nomenclature pertaining to the k-th controlled variable:  

the plant gain; 
the denominator of the plant transfer'  function, henceforth called 
the self -operator;" 
the controlled variable; 
the loop delay (lag); 
the reference value of the controlled variable;  
the coupling coefficient of the i-th and k-th var iables ,  dependent 
on the propert ies  of the plant: ai,(p) is either a constant (positive 
o r  negative) or a function of the operator p ;  

translation the adjectival prefix * * s e l f  -*' qualifies quantities and expressions pertaining to  an isolated 
single-variable subsystem which does not interact with the subsystems of  other, " e x t r a n e o u s "  variables.] 
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the t ransducer  gain; 
the t ransducer  self -operator;  
the controller output; 
the amplifier gain; 
the controller gain; 
the controller self-operator;  
a coupling coefficient between k-th and i-th t ransducers;  
the load. 

W e  now write the se t  of equations in Laplace t r ans fo rms  for  the k-th 
controlled variable with ze ro  initial conditions. ::: Making use  of the 
nomenclature in Figure 2.3, we write the plant equation . 

the equztion of the measuring device 

the amplifier equation 

xk ( p )  = K k  .xk ( p )  ; (2 .9)  

and the controller equation 

+ K k R k  (P) Q k  (P) 2 uki (P) Yi (P) K k K k  . b a P k Y k  -k 
, = I  

i # k  

+ K k K k a a k P k  ( P ) + K k R k  (P) Q k  ( P ) f n  (PI. (2 .11)  
i # k  

The subscript  k runs f rom 1 to n,  and we obtain a complete set  of 
equations describing the behavior of the multivariable control system 
under the given conditions. 

Putting r ~ d =  0 in (2.11)  (the measuring devices a r e  uncoupled), we 
obtain an equation fo r  the c l a s s  of MCS in which the controlled var iables  
a r e  interrelated through the controlled object only: 

[Dk(P)Rk(P)Qk(P)e 'kPtKkKk.akPL, I  ' k ( P ) +  

3- K a R k  (P) Q k  (P) 2 a k i  (P) y i  (P) = KkKk a a k ~ k Y k r e f ( P )  + 
/ = I  

i # k  

+ K k R a ( P ) Q a ( P ) f k ( P )  ( k = l ,  . . . I  n). (2 .12)  

* This means that initially the outputs of the various subsystems are zero, provided that they are described by 
first-order equations: if they are described by second-order equations, the first derivatives are also zero, etc. 
As regards the delay element, the output and its derivatives a t e  assumed zero in the interval (-T, 0). 
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As a par t icular  example, the equation of a multidimensional s e rvo -  
system can be derived f rom ( 2 . 1 1 ) .  
a MCS in which the controlled var iables  a r e  interconnected through the 
measuring device only. 

A multidimensional servosystem is 

Therefore  putting in ( 2 . 1 1 )  u b i =  0, we find 

( 2 . 1 3 )  

where 
x, = qefi - Y,. 

(b) In the preceding we have considered the interdependence of the 
controlled variables contributed by the propert ies  of the controlled object 
and by the coupling between the measuring devices (an art if icially introduced 
factor) .  
var iables  in a l l  the other loops via the k-th controlled variable.  In some 
cases ,  however, a change in the load in the k-th subsystem may directly 
influence some other controlled variables.  
that the load (or the disturbance) is often introduced as an additional control 
factor.  In these so-called c o m b i n e d  c o n t r o l  s y s t e m s  the p ro -  
portional deviation control (the Watt-Polzunov principle) is combined with 
load control (Poncelet  principle). 
system is obtained if equation ( 2 . 1 1 )  is modified to allow for  load coupling. 
In a particular case,  a combined control system may degenerate into a 
MCS with load coupling, provided that the load coupling is not employed 
a s  a control factor.  

Let pki(p) be a coefficient describing the effect of the i-th load on t h e  
k-th controlled variable;  ,%i ( p )  is a constant number o r  a function of the 
operator  p .  We assume  that disturbances from extraneous loads (i. e.,  
those not associated directly with the k-th variable) a r e  a lso fed to the 
plant input. In this general  case,  we have 

In this ca se  the load in the k-th control loop affects the controlled 

It is moreover  significant 

The equation of a combined control 

l D k  (P) Q k  (P) R k  (P) erkp  + K k r o r l  y k  (P) + " + K d ? ,  (P) Q k  (P) 2 a k t  (PI yi (P) t K k  r k i  (PI yi (PI = 
, = I  i = l  

i # k  i + k  

= K k t o r Y k r c f ( P ) + K k r o r  2 f k i ( P ) y e f i ( p )  + K b R , ( P ) Q k ( P ) P k ( P ) +  
, = I  

( 2 . 1 4 )  

where 

If the disturbance f rom the self-loads is not delivered to the plant 
input but to the input of some other element in the control system, the 

function of p before the sum Bk<(p) will change, while the equation a s  
a whole will retain i t s  s t ruc tu re .  
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The se t  of equatioris (2.14) applies to the most genera l  ca se  of multi-  
variable control systems,  provided that the individual variables are 
controlled by single-loop systems.  
control system (with a single controlled variable) can be  obtained f r o m  

The equation of an ordinary combined 

(2.14) by putting Z i k  ( p ) = T ( k = o .  

5 2 .3 .  
SYSTEMS IN MATRIX FORM 

EQUATIONS O F  MULTIVARIABLE CONTROL 

The equations describing MCS dynamics can be conveniently written 
in matrix form,  which is very compact and sometimes facil i tates the 
mathematical  analysis of the sys tem.  

preceding the self-variables in equation (2.14), a n i ( p )  denotes the operatorial  
expressions representing the influence of the i-th variable on the k-th 
variable.  Then 

We use the following symbols: a,, ( p )  deiiotes the operatorial  expressions 

a k k ( p ) = D k  ( P ) R k ( P )  Q k  ( P ) e T k P f K k K k a 6 a P k *  

a h i  (P) = K k R k  (P) Q k  (P) 
g b k  ( P ) = K k R k  (P) Q k  (P). 

(P) + K k p k 6 k K a k r k , ,  

We also  put 

where 

(2.15) 

( 2 . 1 5a) 
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Some part icular  c a s e s  of the general  equation (2.15) a r e  given in the 

(a) the equation of an ordinary multivariable control system (coupling 
following: 

through the controlled object only) 

AoYo=K,,,Y,,f +DF; (2.16) 

011 c12 ... Cl" 

c2, az2 . . .  cZn 
A -  . . . . . . .  

(b) the equation of a multidimensional servosystem (coupling through 
the measuring elements  only, i. e., at,i(p) = p h i @ )  =o)  

; 

where 

(2.18) 

(c)  the equation of a control system with load coupling (a,,< ( p )  = r k i ( p )  = 0 )  

where 

is a diagonal matr ix .  

identical control subsystems and symmet r i c  coupling, i. e . ,  a S i ( p )  = a ! , k ( p )  and 
a i a ( p )  =akj(p). 
may be written a s  

An interesting par t icular  ca se  i s  that of controlled var iables  with 

The matr ix  A i s  symmet r i c  in this case,  and the ma t r ix  Ak 

A ,  = a  ( p )  E. (2  20) 

where 

and 

1 0  . . .  0 
... 11 . . . . . .  
. . .  

(2.2 1) 

is the identity matr ix .  

equations fo r  the different ca ses .  
F r o m  (2.15), (2 .16) ,  (2 .17 ) ,  and (2.19)  we obtain the respect ive ma t r ix  

The general  case:  

Y = A-' [KJ',ef+ DF + B r +  Cv,,f]. (2.22) 
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The case  of an ordinary multivariable system: 

Y = A,' [ K t J r e ~ + D F ] .  (2.23) 

Multidimensional servosystem: 

Load-coupled control system: 

In o r d e r  to obtain equations in Laplace t ransforms,  the inverse ma t r i ces  
A- ' ,  A i ' ,  A; ' 
We know from mat r ix  theory that the inverse of a ma t r ix  is found in the 
following way: 

interchanged. 

should be found in explicit fo rm for  each controlled variable.  

1. The given ma t r ix  is transposed, i. e., i t s  rows and columns a r e  

2 .  
3 .  

4 .  

W e  now proceed to determine the inverse A-1. 

Each element of the transpose is replaced with i t s  minor.  
Each element in the ma t r ix  f rom 2 i s  divided by the determinant 

Each element of the matr ix  f rom 3 is assigned the sign ( - l ) i + j ,  

F i r s t  we write the 

value of the system. 

where i is the row number and j the column number of that element. 

t ranspose 

A, = 

and the determinant 

A =  

(2.26) 

(2.27) 

The minors  of the elements  of the t ranspose (2.26)  with appropriate 
algebraic s igns (the so-called cofactors) a r e  denoted by A i j ( p ) ;  h e r e  A i j ( p )  

is the determinant of the t ranspose with the i-th row and the j-th column 
c rossed  out ,  and i t s  sign is (- - l ) j+ j .  

The inverse A-1 is thus written in the form 

(2.28) 
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11111 l1.11111 I ..I. I I- . II . . ,.. ,,,. ,..,.. __..-.-..-- 

... . . . . . . . . . . . . . . . . . . . . .  (2.32) e21 (PI Y1*.f(P)+O+ +CZ"(P) Y " d P )  + / /  jl . . . . . . . . . . . . . . . . . . . . .  
I cn1 ( P )  Yi ref ( P )  + ... + cn,  n-1 (P) Y n  ref(P) + 0 II j 

Multiplying, we obtain f o r  the matr ix  of the controlled var iables  

+ 
. . . . . . . . . . . . . . .  (I 

. . . . . . . . . . . . . . . . . . .  ;I 

. . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . .  
. (2.33) 

40 

....... I 1  



The matr ix  equation (2.33) can be partitioned to n equations in n controlled 
variables.  
ma t r i ces  in the right-  and the left-hand s ides  of (2.33). 
any j-th controlled variable thus takes the fo rm 

These a r e  obtained by equating the corresponding rows of the 
The equation of 

(2.34) 

Equation (2.34) is the most general  expression for  the j-th controlled 
variable in a system where the var iables  a r e  coupled through the plant, 
the loads, and the measuring devices, but each variable is regulated by 
a single-loop subsystem. 
this  general  equation. 

between the controlled variables is conditioned by the plant only. 
equation of the j- th controlled variable in this ca se  is easily obtained 
from (2.34) putting b i k ( p )  = C i k ( P )  =0:  

Let u s  consider some par t icular  ca ses  of 

( a )  Ordinary multivariable control sys t ems ,  where the coupling 
The 

(2.35) 

IHere A. and A o i j  a r e  obtained from A and A on substituting r ik=  0. 

variable of one of the se rvos  in a multidimensional servosystem is obtained 
from (2 .34 )  by putting b , k ( p )  = 0 and a i h ( p ) =  0: 

(b) Multidimensional servosystems.  The equation for  the j-th controlled 

where 

(2.36) 

(2.37) 

and A,,,*j a r e  the cofactors of the corresnonding elements  in the determinant 
(2.37)::. 

(c)  Ordinary combined control system. We have already s t r e s sed  that 
if  the ope ra to r s  b i k ( p )  a r e  appropriately chosen, equation (2.34) can be 
made to represent  the j-th controlled variable in a multivariable combined- 
control system. In an ordinary combined control system, load signals,  

* The subscript mil  indicates that the cofactor pertains to the element  ij of the matrix of the multi- 
dimensional servosystem. 
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as well a s  the monitored deviation, are used as controlling factors .  
equation f o r  a combined control system with a single controlled variable 
is obtained without difficulty by putting i =  1, Ai,= 0, and cik= 0 in ( 2 . 3 4 ) .  
If now the sys t em comprises  seve ra l  control loops which a r e  load-coupled 
in the sense  that the loads of the different loops a r e  employed to improve 
the quality of each subsystem, the general  equation is obtained f rom ( 2 . 3 4 )  
by the above-mentioned substitution: 

The 

where 
a , ,  0 ... 0 

0 ... ... a,, 

Having considered the various equations of multivariable control sys t ems ,  
we now proceed to  discuss  their  operating conditions. 

5 2 . 4 .  STEADY -STATE OPERATION 

We will der ive a ma t r ix  equation for  steady-state operation and establish 
some general  propert ies  of multivariable control sys t ems  under steady- 
s ta te  conditions. Remember that fo r  the t ime being we a r e  dealing with 
multivariable sys t ems  with single-loop subsystems.  

The steady-state equation can be obtained from ( 2 . 1 5 )  by putting p =  0. 
In explicit form,  the equation for  any j-th controlled variable under steady- 
s ta te  conditions is written f rom ( 2 . 3 4 )  a s  

It is readily seen that delay elements,  i f  present ,  do not influence the 
steady-state operation of the system, since l im erp = 1. 

p - f o  

Let m out of the total n control loops be integral ,  while the remaining 

h 
n-m loops a r e  proportional. 
only i f  i t  contains a t  least  one integrating (floating) controller / 4 ,  5 / .  
proportional sys t ems ,  the controller contains no integrating (floating) 
e lements .  

A single-loop system is called integral  i f  and 
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Let the elements  be enumerated in such a way that the f i r s t  m subscr ipts  

A -  I -  

@ = I ,  2, .... m), 

( k = m + I ,  .... n), 
(k = 1, 2, .... m). 
( k = m + l ,  .... n). 
( k = l ,  2, .... m). 

( k = m + l ,  . . . .  n), 
( R = l ,  .... m), 

( k = m + l ,  .... n). 

K l  Ultmrfz ... K I  fOIrln 
KltOrrzI KZ 101 ... KZ torrzn 

Knrolrnl . . . . . .  K ,  

. . . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  (2.41) 

(2.40) 

The  t ranspose in th i s  case is 

Inserting (2.41) in (2.39) and making u s e  of (2.42), we find 

If the measur ing  elements  are uncoupled, we  have 

Y, ,(O) = 

Kim, ... 0 0 

0 ~ j - l u r I  0 0 
0 ... K/+lmc 0 

K I l m  0 ... 0 
0 ut,  ... 0 

0 0  ... K , ,  

. . . . . . . . . . . . . .  

. . . . . .  ... K” to1 

. . . . . . . . . . . . . .  

(2.42) 

(2.43) 
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We thus a r r i v e  a t  the following remarkable  conclusion: i f  the subsystems 
a r e  a l l  integral ,  the steady-state value of a given controlled variable is 
indeoendent of i t s  own load and of the load of the other subsystems; i t  is 
fur thermore independent of the other controlled var iables  (although without 
control, a l l  the var iables  a r e  plant- and load-coupled), depending only on 
the art if icially introduced coupling coefficients between the measuring 
elements,  which in a s ense  a l t e r  only the reference value. 
elements a r e  uncoupled, the controlled variable is equal to i t s  reference 
value. 
systems a r e  integral ,  the controlled var iables  a r e  independent in the 
steady-state and the system is said to be s t a t i c a l l y  n o n i n t e r a c t i n g ; : . .  

If, however, the measuring devices a r e  coupled, the steady-state value 
of each controlled variable is dependent not only on i t s  own reference value 
but a lso on the reference values of all  the other variables.  

Let u s  now consider the case of proportional subsystems,  assuming that 
the controlled object does not contain integrating elements either.  
system determinant is written a s  

If the measuring 

This  resul t  can be alternatively stated a s  follows: if  a l l  the sub-  

The 

(2.44) 

The traiispose A , ,  under steady-state conditions is 

Equation (2.39) is thus rewrit ten a s  

Each A i j  is the determinant (2.44) with one r o w  and one column crossed 
out. 
always one l e s s  than the degree of the determinant A s .  

we have 

The degree of the determinant in the numerator  of (2.46)  is thus 

It is easily seen that a s  the controller gain K increases  indefinitely, 

(2.47)  

This  increase in gain i s  of course permissible  only if  the system 
retains  i t s  stability. 

Thus,  if  the gain Kit,, of each control loop is increased by increasing 
the corresponding controller gain, each controlled variable in the limit 

* The general case of noninteracting (autonomous) systems is treated in a special section of Chapter Six. 
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is equal to i t s  reference value, appropriately modified by introduction 
of art if icial  coupling between the measuring elements;  it is thus independent 
of the other controlled var iables  and loads. 
uncoupled, w e  have 

If the measuring elements  a r e  

(2.48) 

F r o m  (2.4d) and the values of the elements  entering equation (2.46) 
we see that i f  the coefficients Kj a r e  finite, the individual controlled 
var iables  are coupled, but the interdependence diminishes a s  the gain 
factors  of the individual control lers  increase.  

can be  applied to determine the steady-state value of the controlled variable 
and hence to establish the relationship between the controlled variable 
and the load. 

As  an example, we calculate the steady-state value of, say,  the 
second controlled variable in a three-var iable  system: 

If al l  the plant and controller pa rame te r s  a r e  known, equation (2.46) 

(2 .51 )  

Inserting the appropriate numerical  values, we obtain Yz,. 
F r o m  (2.49) we see  that, by introducing additional load coupling, we 

may achieve any desired variation of the steady-state controlled variable 
a s  a function of load. Note that the number of disturbances or loads need 
not be equal to the number of controlled var iables;  fur thermore,  introduction 
of a cer ta in  number of disturbing factors  in addition to the already existing 
disturbances in the system does not involve any fundamental difficulties. 

Let u s  now consider the general  case,  when some of the subsystems 
a r e  integral  and the others  a r e  proportional. In o u r  example of a three-  
variable system, we a s sume  that Y, is under integral  control. The coupling 
between the measuring elements is ignored, since i t  is artif icially intro- 
duced into the system and only a l t e r s  the reference value of the controlled 
variable.  
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We thus operate  under the following conditions: 

412 (0) = Kz,tm 621 (0) = 0. 

Making use  of (2.52), we wri te  

(2.52) 

(2.53) 

O I  

0 K210I 

&a3, (0) 0 1 

Thus, under s teady-state  conditions, the integral  var iables  are load- 
independent and do not interact  with other  controlled var iables ,  despite 
the plant-coupling. 
controlled variable is if they are mixed with the reference value; however, 
in steady- s ta te  conditions the additional signal causes  an equivalent change 
in the reference signal. 

var iables .  
var iables  are integral ,  while the f i r s t  variable is proportional. The 
equation of the f i r s t  controlled var iable  (again ignoring the t ransducer  
coupling) according to (2.49) is 

The only case  when disturbances may a l t e r  the integral  

We now establish the interaction of integral var iables  with proportional 
Suppose that in our  three-var iable  case,  the second and third 

Substituting fo r  the elements  in (2.54), we find 

(2.55) 

After s imple manipulations, we obtain 

The physical meaning of the components in equation (2.55a) is obvious: 
the f i r s t  t e r m  in the right-hand s ide corresponds to proportional control 
of the given variable, when considered separately, the second and third 
t e r m s  represent  the effect of the var iab le ' s  own load and of the additional 
load of this  and other  var iables  introduced through the t ransducer  pi,,; 
the las t  t e r m  descr ibes  the effect of the extraneous reference values on 
the steady-state value of the controlled variable. F r o m  equation (2.55a) 
it is a l so  easi ly  seen that the effect of the other  controlled var iables  and 
their  loads in the s teady-state  conditions increases  with the increase  in 
plant gain and decreases  with the incPease in the gain parameter  of the 
control ler  o r  the proportional control loop. 
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In conclusion of this  section, we consider the case when the t r ans fe r  
functions of the plant and the control lers  are identically equal fo r  all the 
variables.  
steady-state conditions. Since al l  the subsystems are identical, they 
are al l  e i ther  proportional or integral. 
is of no significance for  o u r  analysis,  since a s  we have shown in the 
preceding for  a more  general  case, the subsystems a r e  independent under 
steady-state conditions. 

We thus consider the case  of proportional subsystems,  remembering 
that subsystem t r ans fe r  functions and the coupling coefficients determined 
by the plant propert ies  are respectively equal to one another. 
ca se  the ma t r ix  A is equal to i t s  transpose At  and is symmetr ical :  aih(p) = 
= a h i ( p ) ,  where i and k are subscr ipts  pertaining to any controlled variable;  

Let u s  consider the case  of an ordinary multivariable control system, 

The ma t r ix  A in this  ca se  is 

We shal l  t r y  to establish the behavior of this  system under 

The case  of integral  subsystems 

In this  

aii(P) -ahh(p) ,  aij(p) =z ah (p). 

ignoring load- and transducer-coupling. 

I a , , , a  a ... a It 
a ae2, a . .. a 

A,=&= a a ... a 
. . . . . . . . . . .  I a a .. . a, a,, 

(2.56) 

The cofactors  of a l l  the diagonal elements in (2.56) are obviously equal, 
i. e., A i i = A j j ,  and they al l  have the sign plus. We can also prove the 
following proposition: 

equal to one another,  but have the sign minus. 

equal to one another and the diagonal elements a r e  a lso equal to one another, 
the cofactors of any two adjoining nondiagonal e lements  will coincide i f  
the corresponding pair  of rows and columns is interchanged in one of the 
cofactors.  This  operation, however, will r e v e r s e  the sign of the cofactor, 
but since the cofactors of two adjoining elements  have different signs,  it 
is c l ea r  that in vir tue of symmetry the cofactors are equal in magnitude and 
in sign. 

We will now show that a l l  the cofactors reduced to identical form have 
the sign minus. It suffices to show that a t  least  one of the cofactors has  
the sign minus. Consider the cofactor of an element adjoining a diagonal 
element. 
the cofactor of an adjoining nondiagonal element must  inevitably have the 
sign minus,  which completes the proof. 

Making use  of the above conditions and the symmet ry  of the matr ix ,  
we obtain f rom the general  equation (2.34) the following expression of 
the j-th controlled variable:  

The cofactors of all the other elements in the matr ix  (2.56) a r e  a l so  

Indeed, since al l  the nondiagonal elements of the ma t r ix  (2.56) are 

This  proves the f i r s t  half of the proposition. 

Since the cofactor of a diagonal element always has  the sign plus, 
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Since all the reference values a r e  equal, equation (2.57) can be written as 

The analysis  of the system is considerably simplified in this case.  
Indeed, the stability of the ent i re  system is deterrr,ined by the position 
of the roots  of the denominator i n  (2.58) 

(2.58a) a,, (PI A,, (P) - (n - 1) a,, ,+I (P) A,, / + I  (P) = 0 

relative to the imaginary axis .  
be reduced to the following form:::: 

It is easily seen that equation (2.58a) can 

It thus suffices to investigate two equations of a much s impler  form,  
namely 

a,/ (P) - a,, / + I  (P) = 0 

a,,+@- 1)a,,,+I(P)=o. 

and 

Th i s  approach to stability is very attractive,  since the o r d e r  of the 
It equations to be investigated is equal to the o r d e r  of the subsystem. 

should however be kept in mind that the r e su l t s  should fur ther  be tested 
for coa r seness  in the sense of A. A. Aiidronov. 
important in ou r  case,  since the smallest  deviation f rom homogeneity 
will markedly increase the o r d e r  of the equation to be investigated for  
stability. 

This  tes t  is particularly 

Under steady-state conditions, equation (2.58) takes  the form 

5 2.5.  
S Y S T E M S  WITH BASIC ELEMENTS 

ERRORS IN MULTIVARIABLE CONTROL 

We re sume  o u r  discussion of multivariable control sys t ems  with sub- 

W e  introduce the concept of an e r r o r  matr ix  in the general  ca se  of 
sys t ems  made up of basic  elements in single-loop configuration. 

a multivariable control system. 
proposed for  multidimensional servosystems / 8 0 / .  
e r r o r  matr ix  X a r e  defined as X,=Y,,,,-Y,. 

The definition is analogous to that 
The elements of the 

Eliminating Y i  and V i  between 

* This result is due  to A. A. Krasovskii / 2 3 / .  
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(2.61) 

In th i s  notation, equations (2.60) can be writ ten in the  m a t r i x  form 
as follows: 

AX = BY,,[ + CF,  (2.62) 

(2.65) 

(2.66) 

(2.67) 

F r o m  (2.62) we obtain the error matr ix  

X = A*' [BY,., + CF]. (2.68) 
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The  mat r ix  A can be  written as  a product of two ma t r i ces  

. . . .  ::::::[lx 
... 1 

all  @) 0 ... 0 

0 0 ... ann (P) 

... . . . . . . . . . . . . .  A = )  0 Q z z ( P )  0 

1 
a11 (P) 
0 

- 

. . .  
0 

... (2.69) 
1 RII e . .  Rin 
RZI 1 Rzn 

Rnl ...... 1 
. . . . . . . .  

x = l  1 RIZ . . R I ~  I-' . . . . . . . . . . . .  
Rn, . . . . . .  1 

are likewise fo r  the ma t r ix  B 

-!-. 0 ... 0 

x o -  a42 (PI ... O x  
a11 (P) 

1 

. . . . . . . . . . . . . .  
1 0 0 ... - 

a n n ( p )  . 

B =  

1 

. . .  . . . . . . . . . . . . . .  I1 
(2.70) 

Making use of (2.59), we wr i te  the inverse  A-lin the fo rm 

RI z 
1 . .  

... 

0 ... 
1 - 

a22 (P) ... . . . . .  
0 ... 

(2.71) 

Substituting (2.70) and  (2.71) in (2.68), we obtain 

. . . . . . . . . . . . . . . . . . . . .  

(2.72) 
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Consider the f i r s t  t e r m  in (2.72). It determines the dynamic propert ies  
of a multivariable sys t em without load and of sys tems where the t ransient  
process  is initiated by a disturbance a t  all the subsystem inputs or ,  
equivalently, by application of the reference values Y i r c f ( p )  t o  the system inputs. 

Consider an isolated, noninteracting system. I t s  t ransfer  function can 
be obtained by putting a f k ( p )  = r i k ( p ) = O ,  and in o u r  par t icular  ca se  f , ( p ) = O .  
Thus 

XJp)=nrr(P) 61 ( p )  Yi ref (P). (2.73) 

- 0 ... 0 
1 

0 1 1  ( P )  
1 a,,o ”. O a-1 = 

We will now determine the sys tem e r r o r .  
transformation we know that 

F r o m  the propert ies  of Laplace 

(2.74) t, (P) l im x (0 = ‘im P Yi ref (P). 
I+==  P+O 

!. 

Let gi,.,(t) be a s t ep  function, then 

Y1r.f (0) , 
Yi ref = - P 

Thus 

Here  &!& is the proportional o r  the zeroth e r r o r ,  

to  a cer ta in  degree,  e r r o r s  of higher o r d e r  can be obtained. 

I#’), Kp), . . ., K?”), where  the subscr ipt  identifies the sys t em and the 
superscr ip t  is the o r d e r  of the sys tem error’!c. 

identity mat r ix  

If the sys tem i s  integral 
all (0 )  

Let  the respect ive e r r o r s  of isolated, noninteracting sys t ems  be  

We now return to the f i r s t  t e r m  in (2.72) and postmultiply it by the 

- 
E=aU- ’ ,  (2.75) 

where 

(2.76) 

Making use  of the pecul iar  property of the inverse of a diagonal matr ix ,  
we wri te  the f i r s t  t e r m  from (2.72) in the fo rm 

The order of the error is determined by the degree of integral action of the system. 
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0 ... 0 

0 1 
a11 (PI 

__. 
X a z 2 ( p )  "' . . . . . . . . . . . . .  

... R12 RlnI-' 

R,z ... 
,im x ( t ) =  

f - fm I 11 . . . . . . . . .  . . . . . . . . .  I 

1 0 ... ~ 

ann (P) 

1 0 ... 0 
a11 (0) 

1 
a22 (0) '.' O x  . . . . . . . . . . . . . . .  

1 0 0 ... - 
ann (0) 

O -  

Under steady-state conditions, equation (2.77) can be written as 

(2.77) 

X 

(2.78) 

where 

. . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  

The expression 

... 

... (2.79) 
0 0 ... 

a l l  (0) 0 0 
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the generalized e r r o r  matr ix  takes  the fo rm 

K =  
O S  

1 ... KlpIal,,-pirin -' 
1 + KI tot l+K1tw ..- 1 

. . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . .  
... 0 * * *  1 + K t o t  Ix 1 Knllnanl -P~?,,I 

1 + K" 101 

x 

(2.01) 

(2.80) 

up 0 ... 0 

0 K p  ... 0 . 

0 0 ... KLO' 
. . . . . . . . .  

The inverse preceding the f i r s t  factor in (2.81)  can be found in explicit 
form.  The transpose in o u r  ca se  is 

The determinant of the system is 

The inverse may therefore  be written a s  

(2.82) 
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where 

Th i s  inverse  is now multiplied successively by the ma t r i ces  on its right in 
equation (2.81). Having performed the multiplication, we find 

(2.83) 

Matrix (2.83) is the e r r o r  matr ix  of a two-variable system in explicit form. 
In particular,  if the subsystems are uncoupled, we have a12=a21 =riz=rzi=O 

and (2.83) takes  the form 

(2.84) 
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F r o m  (2.83) and (2.84) we can est imate  the effect of plant- and t r a n s -  
ducer-coupling on the equivalent errors in each subsystem. 

Another interesting case is the e r r o r  ma t r ix  for  pure plant coupling 
or  pure t ransducer  coupling (and not mixed coupling, as in the preceding). 
Putting in (2.83) r12=r21=Or we obtain the e r r o r  ma t r ix  for  a plant-coupled 
two-variable system: 

where 

K12 = 
1 

+ 

(2.85) 

In the case of t ransducer  coupling, we put al2=u2,=  0 and obtain f rom (2.83) 

where 

(2.86) 

Examination of expressions (2.83), (2.84), (2.85), and (2.86) suggests 

The diagonal e lements  of the matr ix  correspond to the equivalent e r r o r s  
a number of general  conclusions for  multivariable control systems. 

of the subsystems, while all the other  entr ies  represent  the effect of the 
i- th e r r o r  on the k-th e r r o r .  

55 



The expressions above indicate that the e r r o r s  in multivariable sys t ems  
with coupling are essentially different f rom the errors in uncoupled sys t ems .  
For example, take the first-loop e r r o r .  F r o m  (2 .83)  we have 

where 

Without coupling Kll=K\o). 
coupling, i. e.,  if  uik>rik, the equivalent e r r o r  Ki, is g r e a t e r  than Kf? In 
particular,  pure  plant coupling inc reases  the system e r r o r .  

an appropriate choice of KzI, ,  will make the e r r o r K , ,  less than K\'). In 
particular,  if  no plant coupling is imposed, i. e., a i h =  0, appropriate 
choice of the subsystem gains will substantially reduce the e r r o r s .  
situation obtains in multidimensional servosystems,  which a r e  t r ansduce r -  
coupled without plant coupling. The recent1.y developed so-called c o n t r o l -  
c o u p l e d s y s t e m s a r e  a l so  classified as multidimensional servosystems.  

If plant coupling is s t ronge r  than t ransducer  

Conversely if the coupling coefficient rih can be so chosen that rik>Kiatk,  

This  

Consider a nondiagonal element of the ma t r ix  (2.86):  

(2.88) 

If the controlled var iables  a r e  independent, r i k =  0 and a l l  the elements 
with rik vanish. Fu r the rmore ,  a s  we have shown in 1391, in single-variable 
sys t ems  inc rease  of each loop gain lowers  the system e r r o r s  and is thus 
advantageous f r o m  this  and some other points of view. ':; It is c l ea r  f rom 
(2 .86 )  that the nondiagonal elements of the ma t r ix  will approach ze ro  a s  the 
gain of each control loop is increased indefinitely. 

* The effect of gain o n  the dynamlc propertles of the system is considered l n  Chapter Four 

56 



Clrzapter T h r e e  

STRUCTURE OF MULTIVARIABLE CONTROL SYSTEMS 

3.1.  INTRODUCTORY REMARKS 

In the previous chapter w e  considered multivariable control sys t ems  
with single-loop subsystems made up of basic unidirectional dynamic 
elements.  
preceding. In o u r  analysis of these sys t ems  we have established that 
with regard to the steady-state e r r o r  they do not differ from ordinary 
single-loop systems,  where an increase in gain improves the accuracy; 
however, even in this simple case  there  a r e  substantial differences 
between multivariable and single-variable control sys t ems .  These 
differences a r e  best  illustrated by considering the character is t ic  equation. 

without stabilization which is made up of basic dynamic elements in a 
single-loop configuration i s  given by 

The philosophy behind this approach was explained in the 

The general  t ransfer  function of a closed-loop single-variable system 

" 

(3.1') 

where a i ( p )  i s  the self-operator of an element.  Depending on the exact 
nature of the elements in the control loop, ai(p) i s  a polynomial of f i r s t ,  
second, o r  zeroth degree.  

The character is t ic  equation of the system is written in the form 
" 

i = I  II ai (PI + K =  0, (3.2 ')  

" 
where K= I I K i  is the overall  system gain. 

even those with single-loop subsystems, the character is t ic  equation is a 
sum of polynomials. 
equation of a multivariable control system can be written a s  

Inmultivariable control systems,  
/ = I  

It is c l ea r  f rom Chapter Two that the character is t ic  

where f ,  and p i  a r e  functions of the loop gain factors  and functions of the 
coupling coefficients between the individual controlled variables.  Pi a r e  
functions of the self-operators of the individual subsystems. 
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The effects of gain and coupling on system dynamics should be considered 
separately,  but r ega rd le s s  of the outcome of this analysis i t  is c l e a r  that 
single-loop configuration does not ensure satisfactory dynamic propert ies  
in multivariable systems.  

In other words, what should constitute the foundation f o r  the synthesis 
of multivariable control s y s t e m s ?  In ou r  analysis of single-variable 
sys t ems  1391, an optimum system was defined as a system which, given 
the necessa ry  and sufficient number of simple dynamic elements,  complied 
with the specified technical requirements .  
quality control system, the problem of synthesis is reduced to  the 
determination of s t ruc tu res  which remain stable a t  a rb i t r a r i l y  l a rge  
gain f ac t a r s  and have an infinite closed-loop posit ive-response 
bandwidth. 

approach to the problem of synthesis of multivariable control system is 
found in 1 8 5 1 .  
st ructures ,  which differ in the mode of coupling between the individual 
variables,  and the synthesis is based on the following two factors :  

Now, what is the desired s t ructure  of multivariable control s y s t e m s ?  

F o r  a very general  c l a s s  of high- 

Let u s  now consider the case  of multivariable control. The only general  

The author distinguishes between three so-called c a n o n  i c 

(a) R = r - r d r  the number of f r e e  inputs, and 
(b) D=rd--n ,  the number of inputs which may optimize the p rocess  (in 

respect  to a certain cr i ter ion)  minus the total number of outputs. 
It is established 1851  that the above data a r e  insufficient fo r  optimum 

synthesis and that some additional information is needed. 
filled by certain constraints imposed on the system o r  by the assumption 
that some of the network elements  a r e  known. 

F i r s t ,  the one- 
loop configuration is the only permissible ,  a p r io r i  known structure  of the 
start ing subsystems; the dynamics of each subsystem is determined by 
the dynamic propert ies  of the measuring devices, the controlled object 
(in relation to the par t icular  controlled variable),  the corresponding 
controller,  and the amplifiers.  
suggested by the very nature of the control process ,  and these elements 
a 1 w a y  s constitute the initial o r  the start ing control loop. 

of the controlled object o r  the load. 
coupling. 
devices a r e  interconnected in a special  way to produce a multidimensional 
servosystem. 
control lers  o r  special  load disturbances introduced to ensure,  say,  
noninteraction and cer ta in  desirable dynamic properties,  they cannot be 
regarded a s  known f rom the s t a r t ,  since they are inherently the outcome of 
synthesis and not the initial data fo r  synthesis.  

networks, is based on a number of requirements.  

variables,  should allow indefinite increase in gain without losing i t s  stability. 

positive-response bandwidth. 

being considered, we demand that the transient be close to the optimum 

This  gap is 

Our approach to the problem is essentially different. 

This  choice of the initial s t ruc tu re  is 

Second, there  is a possibility of natural  coupling, due to the propert ies  
This  may be ei ther  direct  o r  c r o s s  

Artificial dependence is introduced only if  the measuring 

A s  r ega rds  other types of art if icial  coupling between 

The synthesis of multivariable systems,  as that of single-variable 

1. Each component system, considered in isolation from the other 

2. 

3. 

The subsystems should theoretically have an infinite closed-loop 

Depending on the propert ies  of the controlled object o r  the problem 

58 



fo r  each controlled variable o r  that i t  meet a certain optimality cri terion 
fo r  a generalized pa rame te r  representing the se t  of a l l  controlled variables.  

Thus, i f  we know how to build single-variable sys t ems  complying with 
given requirements,  the synthesis of multivariable sys t ems  reduces to the 
determination of the dependence of coupling on system structure  for  the 
case  of subsystems consisting of more  than one loop. 

synthesis of systems where the individual controlled var iables  a r e  plant- 
coupled. 
consideration of load coupling, and finally of combined load and t ransducer  
coupling. 
coupling introduced to improve the dynamic response of the system a r e  
considered separately.  

In this chapter we consider sys t ems  with plant-coupled controlled 
variables.  

O u r  analysis will proceed a s  follows. F i r s t  we shal l  consider the 

Then the complexity of the problem will be increased by 

Multivariable combined-control systems with art if icial  load 

§ 3 . 2 .  THE EFFECT O F  SUBSYSTEM GAIN ON 
STABILITY O F  MULTIVARIABLE CONTROL SYSTEMS 

Let u s  consider the effect of subsystem gain factors  on the stability 

In Chapter Two w e  derived an equation for  the j-th controlled variable 
of a MCS consisting of single-loop subsystems. 

under these conditions (equation ( 2 . 2 9 ) ) .  It is written as 

" i = 1  

The character is t ic  equation of a multivariable control system is 

1 a,,;p; .a,,;p; :.: a&) 
where 

= 0, 

(2.29) 

(3.1) 

We introduce a new symbol: pTfi(p) = D, ( p )  R, ( p )  Q, (p)eTiP,  the self-operator 
of a control loop made of basic elements.  
will be denoted p ( p ) .  

In the lagless  case,  this  operator  
We also write 

R/ (PI Qi (PI = Yi (P), KiKi a 6iPr Kitor. 

In this  nomenclature, equation (3 .1 )  takes  the form 

A =  = 0. (3 .3 )  
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(a) SYSTEM WITHOUT LAG 

Expanding the determinant, we write equation ( 3 . 3 )  in the form 

Fho (P) + KiFhi (P) f K i K / F N j /  (P) . * * + K]K2 ' ' ' Kn + 
i = I  i ,  j = l  

+ f  l a i b ( P ) 1 F " ( p ) + f 2 1 a i b ( p ) l F , - l ( p ) +  ' . . + f n l a i k ( P ) l = ' ,  (3 .4 )  

where F;,,(p), FAi, F;Yii a r e  polynomials in the variable p ,  with coefficients 
independent of the subsystem gains, F , ( p ) ,  Fn-,(p), . . . a r e  polynomials 
with coefficients independent of Ki, and a i k ( p )  and f [ a i k ( p ) J  a r e  functions of 
the coupling coefficients. 

We now show that under certain conditions increasing the gain of some 
o r  a l l  subsystems r ende r s  the multivariable control system unstable, and 
that in multivariable sys t ems  with single-loop subsystems there  is a 
contradiction between the feasibility of infinite gain and the stability of 
the system. We assume the following relationships between the loop 
gains of the system: 

1 Ki= K ,  
u2 = sIK, 

U,, = qfl- iK. 
. . . . . .  

Substituting ( 3 . 5 )  in ( 3 . 4 ) ,  we find 

( 3 . 5 )  

Increasing the gain is equivalent to decreasing m. 
reduces to investigation of system stability a s  m+O. 

Suppose that in the general  ca se  the character is t ic  equation can be 
written in the form 

Our  problem thus 

Here the subscr ipts  of F denote the degree of the polynomials. We now 
proceed to determine the conditions under which the roots  of equation (3 .8 )  
are situated for  m+O in the left-half plane (i. e., to the left of the imaginary 
axis).  

equation (3 .8 )  is N o .  
roots will approach the roots  of the equation 

It is c l ea r  f rom o u r  notation that the total number of roots  in 
Let  m+O in equation ( 3 . 8 ) .  Then N, out of the total No 
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which we cal l  the d e g e n e r a t e  e q u a t i o n ,  by analogy with the theory 
of single-variable control sys t ems  1391. 
to infinity as m+O. 

c r i t e r i a .  
the disposition of the No-", roots  which recede to  infinity a s  m+O. 

The other  N O -  N, roots  will tend 

Suppose that the degenerate equation F N , , ( ~ )  =O sat isf ies  the stability 
Then the stability of the ent i re  equation (3.8) will depend on 

Let  u s  consider  the following cases .  
C a s e  1. 

N, = No- 1, N2 = No- 2, . . . , N, = No - n. (3.10) 

We divide equation (3.8) by mn and write i t  in expanded form: 

1 a,pNa+a,,pN.-'+ao2pN.-~~ ... + , [ a , , p ~ ~ - ~ + a , , p ~ ~ , - ~ +  . . . I +  
+;;; i - [a20pN~-2+a21pN~--3+a2ZpN~-4+ 1 . . . I +  . . . 

The degenerate equation in this ca se  is 

It i s  implied that the coefficients of the degenerate equation satisfy 
the stability c r i t e r i a ,  since otherwise fur ther  analysis is meaningless. 
Thus for  m*O, N o - r z  roots  of equation (3.11) approach the N O - n  roots of 
equation (3.12), which by definition lie in the left-half plane. 

receding to infinity a s  m+O. 
We now derive an equation which gives the location of the n roots  

Let 

p = Q .  
m 

Substituting (3.13) in (3.11) w e  find 

(3.13) 

(3.14) 

Multiplying (3.14) by " 0  and taking m+O, we find in the limit 

a,qNo + a,,qNa-' + a2,qN~-z f . . . = 0 (3.15) 

or ,  eliminating q N o - "  roots,  

a,qn + aloq"-l +a,,q"-Z+ . . . +a,, = 0. (3.16) 

We shal l  r e f e r  to equation (3.16) a s  the auxiliary equation of the f i r s t  
kind. 
and determines the location of the n roots  which receded to  infinity as 
m+O. 
if  the coefficients of (3.16) comply with the stability c r i t e r i a .  

It compr i se s  the leading coefficients of the polynomials in (3.11) 

The roo t s  of this  equation move to  infinity in the left-half plane 
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To sum up, if condition (3.10) is satisfied,  the multivariable control 
system rema ins  stable r ega rd le s s  of an indefinite i nc rease  in the sub- 
system gains, provided that the degenerate equation and the auxiliary 
equation of the f i r s t  kind each comply with the stability c r i t e r i a .  

C a s e  2. 

N,=Nn-2, N2=N,,-4, ..., Nn=Nn-22n. (3.17) 

Equation (3.8) is now written in the form 

(3.18) 

The degenerate equation is 

U nn PNa-'*+ a,lPN4-2"-I f . . . +a,,, Na-2,1 = 0. (3.19) 

The degenerate equation is again assumed to satisfy the stabil i ty 
conditions. T o  establish the stability of the ent i re  system, we have to 
elucidate the location of the 2n roots  which recede to infinity a s  m - 0 .  

Substituting in (3.18) 

p = Q ,  (3.20) - 
m 2  

N. 
multiplying the equation by mT, and taking the l imit  a s  m+O, we obtain 
a f t e r  division by q N o - 2 n  

a,q2" +al,q2n-2+a2nq2"-4+ . . . +a,,=O. (3.21) 

Putting x = q 2 ,  we rewri te  (3.21) in the fo rm 

ao~"+a,&"-'+u2&"-2+ . . . +a,,=O. (3.22) 

In ou r  investigation of stability of equation (3.21), we a r e  concerned 
only with the case  when the roots  of equation (3.22) are real and negative, 
since a l l  the other  alternatives correspond to unstable sys t ems .  Now, i f  
the roots  of (3.22) a r e  r e a l  and negative, the roots  of (3.21) are  imaginary.  
This  is a limiting case  in the Lyapunov theory, and whether (3.2 1) is stable 
o r  unstable depends on the actual location of the roots  of (3.21) when m is 
sma l l  but not zero.  
which recede to infinity as m+O, only the t e r m s  l inear  in m should be 
retained in the auxiliary equation, dropping all the higher-order  t e r m s .  

(3.20) in (3.18), we find 

Thus, in o r d e r  to determine the location of the 2n roots  

We now proceed to derive the auxiliary equation fo r  m.  Substituting 
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,+-6 qN,-2" qNo-2n- I 
+a22~.-6+2+ ... + a n O ~ + a n l -  

m 2  2 +? 

+ ... =o. - t2 - 
m 2  

p.6 
Multiplying by m 2 ,  w e  obtain 

1 

a,qNo + m 5 a o l q N Q - 1  + m a O 2 q N o - 2 +  ... + a , , q N o - 2 +  

1 1 - - 
+ m Z a l 1 q N o - 3  + m a 1 2 q N g - 4  + ... + a 2 , q N o - 4  +m2a2,qA'~-5+ 

+ m a 2 , q N 0 - 6  + ... + a,,,qNo-2* + a n l m F q N 9 - 2 n - 1  + 1 

+ m a n 2 q N * - 2 n - 2  + ... =o. (3.23) 

I 

Here  m? is of the f i r s t  o r d e r  of smallness .  Dropping the t e r m s  of higher 
o r d e r  in m ,  we find 

1 1 

a , , q N * +  m ~ a , , q N ~ - ~  + a, , ,qNa-2+ m ~ a , , q ~ ~ o - 3 +  a , , q ~ 0 - 4 +  

1 1 - 
+ m 2 a Z 1 q ~ o - 5 +  ... +a,,qN~-2n+a,,m~qNu-2~-~ = O  

or dividing by q N o - * n - l ,  we finally obtain 

1 1 - - 
a o o q 2 n + 1  + m 2 a O l q 2 n  + aloq2n-1 + m2 a l l q 2 n - 2  -t a2,q2n-3 + 

I 1 - 
+m2a2,q2n-4+ ... +mTa,,=O. (3.24) 

This  is an auxiliary equation of s e c o n d  k i n d  which, in distinction 
f rom the auxiliary equatioli of the f i r s t  kind discussed in the preceding, 
is composed of the f i r s t  two leading t e r m s  of the polynomials in equation (3.8), 

every other  coefficient being multiplied by m". 
The roots  which recede to infinity a s  m+O a r e  in the left-half plane if  

the auxiliary equation of second kind complies with the stability c r i t e r i a .  
Let u s  check that the stability c r i t e r i a  a r e  independent of m. 

1 

Indeed, 
the Hurwitz determinant for this ca se  is 

- 1 -  1 L  - 

aQo a , ,  apo ... a,, 0 ... 0 

0 m 2 a Q ,  m 2 a I 1  ... 0 o . . .  o 

0 0  . . . . . . . . .  o ... m a a n l  

1 

m 2 a Q 1  m 2 a l l  m 2 a 2 1  ... m 2 a n ,  o ... o 

- 1 1 .  
. . . . . . . . . . . . . . . . . . . . . . . .  

1 - 

> 0. (3.25) 

We see f rom (3.25) that mT is a common factor fo r  a l l  the elements in every 

other row and i t  can be taken outside the determinant. 
the scale  of (3.25) but not i t s  sign. In writing the auxiliary equation we 

may therefore omit the factor mT in a l l  the coefficients of this  equation. 
We have thus proved the following proposition. 

1 

Clearly, mT a l t e r s  

1 
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If condition ( 3 . 1 7 )  is satisfied (mathematically this means that intro- 
duction of the next higher o r d e r  of m adds 2 to the degree of the equation), 
the system is stable provided that the degenerate equation obtained f r o m  
the general  equation by putting m= 0 and the auxiliary equation of second 
kind comply with the stability c r i t e r i a .  

the degree of the equation by 3 ,  i. e., 
C a s  e 3 . Here introduction of the next higher o r d e r  of m r a i s e s  

N ,  = N o  - 3,  N ,  = No - 6 ,  . . ., N ,  = No-33n. ( 3 . 2 6 )  

As in Case 2 ,  we make th? substitution 

and write the auxiliary equation in the form 

aooq3” +aI0q3”-3+a,,q3”-6+ . . . fano =o. ( 3 . 2 7 )  

Putting y=@, we rewri te  (3.27) in the form 

aOOy”+a,oy”-’+a,,y”-2+ ... +an0=0. ( 3 . 2 8 )  

Equation ( 3 . 2 8 )  always has  right-half-plane roots,  and the system is 
unstable. 
( 3 . 2 8 )  with r e a l  and negative roots,  since otherwise the system is definitely 
unstable. 

stability 1 3 9 1 .  
of ( 3 . 2 7 ) ,  w e  make use of the relation 

Indeed, the only case  which r equ i r e s  verification is that of 

Suppose that the coefficients of ( 3 . 2 8 )  satisfy the conditions of aperiodic 
To find the roots  Then a l l  i t s  roots  a r e  r e a l  and negative. 

q = f i .  ( 3 . 2 9 )  

By recall ing the propert ies  of binomial equations we conclude that a t  
least  one of the three roots  of ( 3 . 2 9 )  is in the right-half plane. 
the roots  of an n-th o r d e r  binomial equation a r e  given by 

Indeed, 

where k =  1 ,  2 , .  . . 
In our  case  n = 3 and the th ree  roots  a r e  

or 
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One of these roots ,  m, is positive. 

auxiliary equation (3 .27)  are  in the right-half plane and the sys t em is 
unstable. To s u m  up, if we can find two adjoining polynomials with deg rees  
differing by more than two ( three o r  more )  and the higher-order  polynomial 
is multiplied by m to the higher power, the  sys t em is unstable. 

is variable. 

two adjoining polynomials is three  or more, the sys t em is unstable. 
should therefore concentrate only on the case when the difference in the 
deg rees  of adjoining polynomials is e i ther  one o r  two. 
equation can be written in the following form: 

Since equation ( 3 . 2 8 )  h a s  n roots ,  at leas t  n of the 3 n roots  of the 

C a s  e 4 . In this  ca se  the difference in the degrees  of the polynomials 

We have a l ready  established that if the difference in the deg rees  of any 
We 

The corresponding 

mnFNo(p) + " ~ " - ' F N - I ( ~ )  f m " - ' F ~ , - 3 + M " - ~ F ~ , - 5 ( p ) i  
fm"-4FN, -7(p)+  . . .  +FNo-n(p)=O. (3 .30)  

We shal l  show that the polynomials must  be  arranged in the o r d e r  of 
increasing difference in degrees ,  s ince  otherwise the system is unstable. 
It of course suff ices  to show that violation of this  ru le  in any particular 
ca se  resu l t s  in system instability. Consider the s imple equation 

m'F,vo (P) f ? n F ~ , - z ( P )  + F N ~ - J ( P )  =o. (3 .31)  

H e r e  the polynomial of degree N,,  is followed by  a polynomial of degree 
NO -2 and then by a polynomial of degree N,,-3, i. e., in this  three-membered 
equation the degree of the polynomials dec reases  f i r s t  by 2 and then by  1 .  
We wri te  ( 3 . 3 1 )  in expanded form:  

Substituting in (3 .32)  
p = Q ,  

- 
m 2  

we find 

( 3 . 3 3 )  

( 3 . 3 4 )  

N&+1 

We multiply (3 .34)  by  m 2  in o r d e r  to  eliminate the m in the denominator, 
and wr i te  

( 3 . 3 5 )  

65 



Equation (3 .35 )  h a s  coefficients of various o r d e r s  of smallness .  Suppose 
1 

that we decide to retain t e r m s  with trip; dropping t e r m s  of higher o r d e r  of 
smallness ,  we find 

I I 2 - - 
m2aoo9~~  + mTao2qNn-2+ a20gNO-3 + m2a2,9~~-4 = 0. (3 .36 )  

The coefficients of equation (3 .36 )  do not comply with the stabil i ty 
c r i t e r i a  for  two reasons.  F i r s t ,  the coefficient of 9hk-I is z e r o  and, second, 
equation (3 .36)  may be written in the form 

1 

trzv lao,q*’~+ao2qN~-2 +a2,q~o-4] +a,p”-3=0 ( 3 . 3 7 )  

o r  

No - No + 3  = 3, ( 3 . 3 8 )  

and according to the preceding rule ,  i t  h a s  a t  least  one right-half-plane 
root for  small  m. 

in force and the system is unstable a s  before.  
highly important condition: t h e  p o l y n o m i a l s  s h o u l d  b e  a r r a n g e d  
i n  s u c h  a s e q u e n c e  t h a t  t h e  d i f f e r e n c e  i n  t h e i r  d e g r e e s  
i n c r e a s e s .  

condition is satisfied.  It is c l ea r  that a difference of one in the degrees  
of adjoining polynomials is permissible  only between the f i r s t  and the 
second polynomials, and fur ther  down the s e r i e s  the difference mus t  be 
two. This follows directly f rom the rule  that we have just proved, which 
can be called the p r o p e r t y  o f  d e c l i n i n g  d e g r e e s .  

If t e r m s  to the o r d e r  of m a r e  retained in ( 3 . 3 5 ) ,  condition ( 3 . 3 8 )  r ema ins  
W e  have thus proved a 

Let u s  consider the derivation of the auxiliary equation when the above 

We s t a r t  with the equation 

m n F N , ( p ) + m n - 1 F N ~ - 1 ( P ) f m n - 2 F ~ ~ - 3 ( P ) +  . . 
. * .  + m F N o - l ( P )  +FNo-“+l  (P) = 0. ( 3 . 3 9 )  

2 2 

Writing ( 3 . 3 9 )  in expanded form and substituting the var iables  according 
to  ( 3 . 3 3 ) ,  we find a f t e r  simple manipulations 

qNo- 1 qN. - 2 qNa 

... + a l o ~ + a l l ~ +  - - ... +a20=+a2,7+ - - 

a, 7 + a01 7 + a02 -+ . . * - L I 

m 2  m 2  m 2  
No- I qN0-2 q f f r 3  pN0-4 

m 2  m 2  m 2  m 2  

( 3 . 4 0 )  
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N.+1 1 

Multiplying (3.40) by m T a n d  retaining t e r m s  of the o rde r  my, we 
obtain the auxiliary equation 

1 1 I - - 
m2a,,qN~+ a, ,qNa- l  +m2alIqN~-2+ a , q N ~ - 3 +  m~a2,qN*-4+ 

1 - 
+a,qNO-s +- . . . +aN.-n-1,0qND-"-'+m2uNo-n-1,1qN'-'-' =o. 

The smal l  quantity mT clear ly  does not influence the stability conditions, 

(3.41) 

1 

since i t  multiplies a l l  the odd t e r m s  of the equations. 

mz can be omitted f rom the coefficients in writing the auxiliary equation. 
It is c lear  f rom (3.41) that the auxiliary equation comprises  the coefficient 
of the f i r s t  term- of the leading polynomial and the coefficients of the f i r s t  
two leading t e r m s  of all  the subsequent polynomials. 

For  this reason, 
1 - 

1 

Dividing (3.41) by qN0-n-2  and dropping the factor mT, we find 

aooqn+2+aloqn-I +allqn+a2,qn-~+a,lqn-2+ . . . 
" '  taNe-,-lq +aNo-"-2 -o*  - (3.42) 

This  is an auxiliary equation of t h i r d k i n  d . As an example, we 
write the auxiliary equation of the third kind for  n =  2 .  Thus 

a~44+a1,q3$-a1~q2+a21q +a2, =O. (3.43) 

We have thus established under what conditions the subsystem gains 
can be increased and what conditions a r e  to be satisfied by the coefficients 
of the general  charac te r i s t ic  equation in o rde r  for the system not to lose 
i ts  stability. 

We now re turn  to equation (3.6), to determine the s t ruc ture  of the 
subsystems and to summar ize  our  analysis. 

In (3.6) 

FN. = 0 Di (PI Q i  (P) Ri (P). (3.44) 

This  is a product of the products of the self-operators  of the elements in 
a single-loop subsystem: 

(3.45) 

where M ( p )  is a polynomial of degree which is definitely l e s s  than the 
degree of the f i r s t  t e rm in (3.45) by an amount equal to the degree of D i ( p ) .  
Similarly, 

n 

F N Z ( P )  = KiKj TI Dq (P) Qs (P) Rn (P) + M I  (PI , (3.46) 
9 X! J 

i. e., each successive polynomial contains one product D ( p ) Q ( p ) R ( p )  l e s s  
than i t s  predecessor .  Hence it follows that in our  case  D ( p ) Q ( p ) R ( p )  is a t  
most of second degree.  

conclusions. 
Our analysis of the simple basic s t ruc ture  leads to the following 
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1. If the self-operator of each loop with basic elements is of degree 1, 
all the gains can be increased simultaneously without l o s s  of stability. 
The degenerate equation and the auxiliary equation of the f i r s t  kind should 
each satisfy the stability conditions. 

If the self-operator of each loop with basic elements is of degree 2 ,  
all the gains can be increased simultaneously without loss of stability. 
The degenerate equation and the auxiliary equation of the second kind 
should each satisfy the stability conditions. 

3. If the self-operator of each loop with basic elements is of degree 3 
o r  higher, an increase of one, several ,  or  all loop gains invariably leads 
to loss of stability. There  is consequently a contradiction between the 
feasibility of gain increase and the stability of the sys t em,  s imi l a r  to that 
observed in single-loop sys tems with a self-operator of degree higher 
than two. 

4 .  
a r e  of different degrees,  the gain of none of the loops with self-operators 
of degree higher than 2 can be increased without losing the stability of 
the system as a whole. 

the rule of declining degrees.  
difference of 1 in their  degrees and the next n-v t e r m s  a difference of 2 
obviously meets  this cri terion. 

2 .  

If the self-operators of the different loops in a multivariable system 

5. The s t ructure  of the multivariable control sys tem should satisfy 
A system with f i r s t  u t e r m s  showing a 

A = 

(b) SYSTEM WITH LAG 

B I  I (P) + KI Klvl (P) a, ,  (P) . . . KIV, (P) aln (P) 
Kzyz (P) ( p )  8 2 1  (P) + Kz . . . &vZ (P) azn ( p )  = 0. ( 3 -4  8) 

Knyn (P) ani (P) 
_ . . . . . . . .  . . . . . . . . .  ... . . . . . . . . .  

KnYn (P) am (P) . . . (P) e'np + ~n tot 

We now return to the start ing set  of equations. We shall  t ry  to establish 
the configuration of a multivariable control sys tem whose subsystems a r e  
made up of basic elements plus lags.  The se t  of equations in this ca se  is 
written in the following form:  

n 

( P i i T  (P) f K i t o t )  ' i  + K( 2 Y i  (P) a i k  (P) ' k  (P) = 
k =  1 
k # i  

= Ki J t  re, (P) (i = 1, 2, . . . , n). (3.47) 
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We now prove the following proposition: i f  t h e  r e e x  i s t s a t  1 e a s  t 
o n e  p a i r  o f  c o u p l i n g  c o e f f i c i e n t s  aih(p) a n d  aki(p) s u c h  t h a t  
aik(p)ahi(p)is O f  h i g h e r  o r d e r  i n  p t h a n  D1(p)Dk(p) i s ,  a n d  t i m e  
l a g  i s  p r o v i d e d  i n  t h e  i - t h  o r  t h e  k - t h  l o o p ,  t h e  s y s t e m  
i s  s t r u c t u r a l l y  u n s t a b l e .  

Indeed, for  the system to become structural ly  unstable in this case,  
it suffices to omit the leading t e r m  f rom the character is t ic  equation. 

As we easily see f rom ( 3 . 4 8 )  and the procedure for  the construction 
of the character is t ic  equation fo r  the ent i re  multivariable control system, 

the maximum value of t is equal to  the sum of a l l  the lags  t =  2 ti and 

a t e r m  e 

entering the character is t ic  equation include the quasipolynomial 

” 
“ i = l  

P r, Ti n 
will precede the product fl p i i  ( p ) .  Since the quasipolynomials 

, = I  

the character is t ic  equation will lose i t s  leading t e rm if aik(p)akl(p)is of higher 
degree than f i f i ( P ) f i h k ( P )  is, and the system will become structural ly  unstable. 

§ 3 . 3 .  STRUCTURE O F  LAGLESS MULTIVARIABLE 
CONTROL SYSTEMS WITH INFINITE-GAIN STABILITY 

Under r e a l  conditions, the self-operators  of the subsystems may be of 
higher than second degree.  
increase in one o r  several  gain pa rame te r s  of loops with self-operators  
of degree higher than 2 will inevitably lead to loss of stability. We thus 
have the following problem: synthesize a multivariable control system 
which would be inherently free f rom the contradiction between stability 
and precision. 

s a y  Y , ,  be of degree V,> 2 .  
to instability of the ent i re  system. 
preceding resul ts ,  but i t  can also be verified directly.  
of this fact will be quite useful in the sequel, and we therefore reproduce 
i t  h e r e  in detail.  

It follows f r o m  S 3 . 1  that in this c a s e  an 

Let the self-operator of the subsystem for  one of the controlled var iables ,  
An increase in gain of this loop inevitably leads 

This  conclusion follows f rom the 
Additional proof 

Developing the determinant ( 3 . 3 )  with respect  to the f i r s t  column, we find 

where Ai, a r e  the cofactors of the corresponding elements in the f i r s t  
column. The f i r s t  t e r m  in (3 .49)  contains p to the highest o rde r ,  since 
i t  c a r r i e s  the fewest mutual-coupling coefficients, which are ei ther  
constants o r  operators  of degree l e s s  than the degree of the self-operators  
of the individual loops. Equation ( 3 . 4 9 )  can thus be written in the f o r m  

F m  (P) + Ki torF~i (P) = 0, (3.50) 
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where the subscr ipts  F designate the degree of the polynomials FNz(p)  and 
F N l ( p ) .  Obviously, Nz = N1+ Vl. Hence i t  follows that if V i > 2 ,  the increase 
in Ki 
that the condition N z -  N 1 < 2  is satisfied i f  the (Nl-2)-th derivative is 
introduced into the f i r s t  loop. 
introduced into the f i r s t  loop, equation (3.50) takes the form 

will immediately r e su l t  in sys t em instability. It is a l so  obvious 

Indeed, if  the ( V i  - 2)-th derivative is 

FNZ ( p )  f KI tot (P'J-' + 1) FNI ( p )  = 0. (3.51) 

Here  N z - N N i , < 2 .  Generalizing this resul t  to the case  when the self- 
ope ra to r s  of each control loop a r e  of degree Vi, we come to the conclusion 
that stability can be ensured fo r  any Kit, ,  i f  the (Vi-Z)-th derivative is 
introduced into each loop with Vi>2. 
in the i-th loop. 

Now, is i t  necessa ry  to introduce, besides the (Vi-2)-the derivative, 
all the lower-order  derivatives a s  well, down to the f i r s t  derivative? 

Before answering this question, le t  u s  derive an expression for  the 
degenerate equation, assuming that the ( V i -  2)-th derivative has  been 
introduced into each loop with Vi>2.  
equation h a s  the fo rm 

This  ensu res  the condition N z -  N1<2  

It is easily seen that the degenerate 

( f Y v ~ - z +  t)(p",-'+ 1). . . (pV'-*+ l )FNn(p)=O. (3.52) 

Regardless  of the fo rm of the polynomial F N n ( p ) ,  the system is obviously 
unstable if  any Vk>3. 
equation can be ensured if  for  vk>3 al l  the lower-order derivatives, down 
to the f i r s t  derivative, a r e  introduced together with the (Vi - 2)-th derivative. 

A system with n plant-coupled 
controlled var iables  can be stabilized with respect  to each controlled 
variable fo r  any gain value. To this end a l l  the derivatives f rom (Vi-Z)-th 
down to the f i r s t  inclusive should be introduced into the corresponding loop 
( V i  is the o r d e r  of the self-operator of the i-th loop). 

Hence i t  follows that stability of the degenerate 

We thus come to the following conclusion. 

S 3 . 4 .  ALTERNATIVE SOLUTION 

In the preceding section we dealt with the synthesis of s t ructures  that 
retained their  stability a t  infinite gain. 
of ideal derivatives of various o r d e r s  into the system. 

This  necessitated the introduction 
We shall  see 

FIGURE 3.1. 
stabilizer. 

The i-th subsystem with a 

from what follows (and incidentally this 
is also known from the l i terature  / 3 9 / )  
that in principle r e a l  derivatives of any 
o r d e r  can be made arbi t rar i ly  close to 
the ideal. This  approach, however, can 
be recommended in practice only if no 
other more  convenient alternative is open 
to us .  In this section we descr ibe a 
synthesis procedure which achieves the 
same  effect (i.  e., indefinite increase of 
gain without loss  of stability) but does not 
r e s o r t  to ideal derivatives.  



It is clear f rom the outset that the single-loop configuration is no longer 
adequate fo r  the subsystems. 
subsystem in a multivariable control system. 
nomenclature for  the i-th subsystem: 

Figure 3.1 is a block diagram of the i-th 
We introduce the following 

Mi(p )D i (p )=  the self-operator of the subsystem, ignoring the stabil izer;  

-=the operator  of the additional element introduced as  internal 

feedback in the subsystem (we call  this  additional path the s t a b  i l  i z e r ); 
Fni(p)and F,j(p)= polynomials in the operator  p ;  
K L s ,  = the gain of the stabilized section, i. e., the pa r t  of the forward 

K l d e ~  the gain of the unstabilized section outside the s tabi l izer  loop; 
G= the plant gain fo r  the i-th controlled variable;  
M ,  I, ( p ) =  the self-operator of the stabilized pa r t  of the controller;  
Mi,&)= the self-operator of the unstabilized section. 
Clearly Kltot=Ki \, K ; K ~  deg . 
Now, suppose that the plant has  n controlled var iables  and there  a r e  

corresDondingly n control networks. 
controlled var iables  a r e  interconnected through the plant, the coupling 
coefficients being a I . k ( p ) .  

the preceding. 
of differential equations: 

Fmi  (P) 

path embraced by the stabil izer;  

As before,  we a s sume  that the 

The constraints on U I . ~ ( P )  a r e  the s a m e  a s  in 
Automatic control can be described by the following se t  

[Di (P)Mide8  ( / ' )[Mi ( P ) F m i ( P ) f K ,  Fn,(P)IfKicotFmi(P)I V,(P)= 
= K i t a t F m r  (P) Y1r.f (P) - K; [Mt .I (P) F m r  (P) +KL L t  F n i  ( P ) ]  X 

(3.53) 

F o r  the sake of convenience we put 

(3.54) 

The degree of the operator  I I i ( p )  is the degree of the i-th self-operator 
plus the degree of the denominator of the s tabi l izer  operator .  
of the operator  B i ( p )  is the degree of the self-operator of the unstabilized 
controller plus the degree of the plant operator  and the degree of the 
numerator  of the stabil izer operator.  
the self-operator of the stabilized controller plus the degree of the 
denominator of the s tabi l izer  operator .  

The degree 

The degree of D i ( p )  is the degree of 

In o u r  new nomenclature,  the equations can be  written in the f o r m  
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The character is t ic  determinant of (3.55) is 

where 

and 

(3.56) 

where F N O ( p )  includes the product of a l l  & ( p )  and a l l  other products in which 
K,, does not en te r  as a factor.  
the highest o rde r ,  and i t  determines the degree of the character is t ic  
equation. 

The polynomial F R O @ )  clear ly  contains p to 

n 

The polynomial F ~ i ( p )  is a sum of the products of & ( p )  and HII, ( p ) ;  
;;; 

FNi(p) also includes al l  other t e r m s  which depend on the coupling coefficients 
a i k ( p )  and appear  as a factor before K,, to the power of 1. 

All the successive t e r m s  in (3.57) a r e  formed according to the same  rule;  
the higher the subscr ipt  N ,  the fewer II;(p) appear  in the product. 

t e r m  in (3.57), having P a s  i t s  coefficient, consis ts  of the product 

plus t e r m s  dependent on a i k ( p )  which appear  a s  a factor before K?, . 
Suppose that each control loop with i t s  s tabi l izer  form an isolated 

network which retains  i t s  stability a s  the gain is increased indefinitely. 
Then, a s  i t  follows from the construction of the polynomials in (3.57), the 
difference in the degrees  of two adjoining polynomials cannot be g rea t e r  than 2 .  

We thus a r r i v e  a t  the following procedure for  the synthesis of multi-  
variable control sys t ems  with infinite-gain stability: 
system in a system with n mutually coupled (through the plant) controlled 
var iables  can be increased indefinitely without causing instability of any 
of the subsystems o r  the system a s  a whole i f  and only if  

( a )  each subsystem, treated in isolation f rom other controlled variables,  
r ema ins  stable a t  arbi t rar i ly  high gains, and 

(b) the degenerate equation and the auxiliary equations of the f i r s t ,  
second, and third kind of the ent i re  multivariable system each comply with 
the stability c r i t e r i a .  

The las t  

n B i ( p )  
n 

l = 1  

the gain of each sub- 

§ 3.5. 
INFINITE-GAIN STABILITY 

LAGGED MULTIVARIABLE SYSTEMS WITH 

Let  u s  now t r y  to extend the r e su l t s  of previous sections concerning 
the synthesis of multivariable control systems with infinite -gain stability 
to multivariable sys t ems  with t ime lags.  
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h'i S I  K Figure  3.2 is a block d iagram of 
a lagged multivariable sys tem with 
t ime lag. P a r t  of the system is 
stabil ized by a feedback element 

with a t ransfer  iunction -. It 

is assumed that the stabilized section 
is lagless .  We will now establish 
the properties of the stabilizer and 
the stabilized section which permi t  
indefinitely increasing the local  gain 
and hence of the total  sys tem gain. 

A s t ruc ture  shown in F igure  3.2 

K r c ,  % m m  

2; 
; 

fm1 /p/ - 
FIGURE 3.2. 
lizer and a lag element. 

The i-th subsystem with a stabi- 

is descr ibed by the following se t  of differential  equations: 

(3.58) 

where 

Ni(p)= the self-operator  of the unstabilized section of the i-th subsystem; 
Qi(p)= the self-operator  of the stabil ized section of the i-th subsystem; 
Ki= the gain of the unstabilized section of the i-th subsystem; 
Ki ,, = the gain of the elements  in the s tabi l izer  loop; 
Ki tot = I ( ,  
The character is t ic  equation is 

Ki d r g  . 

(3.60) 

In the following we assume that the gains of the stabilized elements  in the 
var ious subsystems a r e  e i ther  equal to  one another o r  a r e  re la ted by 

Ki ,t =MI .=M (r 
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The character is t ic  equation is thus writ ten in the fo rm 

(3.61) 

where F ( p )  is a polynomial independent of K,, and T. 
are  obviously of lower o r d e r  in p than the polynomials in the f i r s t  t e r m  
in braces .  

The polynomials D i k ( p )  

Dividing (3.61) through by K:, we put 

Equation (3.61) is thus written in the form 

z T1P + D,, (P) e'=2 + . . . + D,, (P) = 0. (3.62 

The degenerate equation is obtained by taking m= 0 in (3.62): 

( 3 . 6 3  

Suppose that the degenerate equation (3.63) can be made to satisfy the 
stability conditions by appropriate choice of the stabil izer pa rame te r s  
Fni(p) and F,, ( p )  (otherwise,  fur ther  analysis  is meaningless).  
of the ent i re  system is dependent on the location of the roots  which recede 
to infinity a s  m- 0. 

According to the theorem of s t ruc tu ra l  stability proved in the previous 
section, we know that equation (3.62) has  a leading t e r m  if for  each pair  

The stability 

F i r s t  we should establish the presence of the leading t e r m  in equation (3.62). 
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of coupling coefficier,ts the polynomial a , k ( p ) a k i ( p )  is of lower degree than 
the polynomial D i ( p ) D k ( p )  is .  
is satisfied. 

In what follows we a s sume  that this  condition 

Let u s  find the number and the nature  pf the roots  which go to infinity 
I: T l P  

as m-  0. Dividing equation (3.62) by m"e'=' , we find 

Equation (3.64) can be expanded in the fo rm 

- I: T i P  

A,,,pN" + A,,,pZ'9-' -+ . . . + (B,,pp~a +B,,pP~n-l + . . . ) e  

+t  [ ~ , , p ~ ~ + ~ , , p ~ ~ - ' + .  . . + ( ~ , , p ~ ~ ~ + + ~ , p " ' " - ' +  ...I e - ' i p +  . . . I +  
+? [A, ,ph~+A,,pN~-~+.  . . +(B20pP~+B21pP~-1+.  . . )e- lzp+.  . . ]+ 

+ . . . + tn" [AnopNn + A,,pNn-' + . . . 

+ 
I 

I 

.. . + ( ~ , , ~ p ~ n o  + ~ , , , p ' n o - ' +  . . . ) e - l l p +  . . . I  = 0, (3.65) 

where N o .  N , ,  . . . a r e  the degrees  of the polynomials associated with the 
corresponding powers of m in (3.65). Let 

N , - N , = I ,  N , , - N N 1 = 2 ,  ..., N,-NN,=n.  (3.66) 

In other words,  the degree of each successive sum of polynomials i s  one 
less than that of the preceding sum. 

We make the substitution 

p = Q .  (3.67) m 

- Inser t ing (3.66) in (3.65), multiplying by mN and putting m=O,  we 
obtain af ter  some manipulations 

AO09" + Alo9"-' + . . + A,, = 0. (3.68) 

The re  a r e  n roots  which go to infinity for  m+O, and their  location on the 
root plane is determined by the coefficients in (3.68). 



All the roots  of equation (3.68) recede to infinity in the left-half plane 
if and only if the coefficients of this  equation satisfy the Routh-Hurwitz 
c r i t e r i a .  

We thus come to the conclusion that a system with constraint  (3.66) 
is stable i f  the degenerate transcendental  equation and equation (3.68), 
which by analogy with the preceding is called an auxiliary equation of the 
f i r s t  kind, both satisfy the stability conditions. 
choose the stabil izer t r ans fe r  function and i t s  location in the sys t em ensuring 

Our  problem is thus to 

No - N, = i. 

Let u s  now consider the case  

N o - N 1 = 2 ,  N o - N 2 = 4 ,  ..., N o -  N,=Zn.  (3 .69)  

Subs t i tu ting 

p=Q m2 ( 3 . 7 0 )  

and acting 2s in the preceding, we obtain an auxiliary equation of second kind: 

A,qNo + AolqNO-' + . . . + AloqNo-2 + Al1qN0-3 + . . . 
. +A,oqN~-2* + AnlqNo--Sn-l +... (3.71) 

/ 

We have obtained a s imi l a r  equation before,in o u r  analysis of lagless  
multivariable sys t ems .  
of each polynomial in (3.65). 

It comprises  the f i r s t  two leading coefficients 

The system is stable fo r  m + 0 if and only if  
(2) the degenerate transcendental  equation sat isf ies  the stability 

(b) the auxiliary equation of second kind also sat isf ies  the stability 

Dividing (3.71) through by qN0-**, we write the auxiliary equation of 

conditions , 

conditions. 

second kind in the fo rm 

Finally, i f  

No- NI > 3, No- N, > 6, . . ., (3.73) 

the system is unstable f o r  m+O. The validity of this  proposition follows 
from the property of roots of binomial algebraic equations and is proved 
in the same  way as before.  

We thus come to the conclusion that multivariable control sys t ems  
with t ime lag which remain stable under unlimited increase of thy sub- 
system gains a r e  realizable.  
a r e  specified in the preceding. 

s t ructure  of the control system. 
pa rame te r s  N o ,  NI, . .  ., N , .  

The necessa ry  conditions for  this synthesis 

Let u s  elucidate the relationship between the above conditions and the 
In other words,  we determine the 
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Examining the s t ruc ture  of the polyiiomials in (3.65) and making use of 
the nomenclature (3.59),  we s e e  that the differences N a - N , .  N i - N z r  . . . 
. . , , A',, - I - N ,  are given by ihe relation 

N o  - N ,  = mi+ Q1 - n,, ( 3 . 7 4 )  

where  mi is the degree  of the opera tor  p in the denominator of the s tabi l izer  
t r ans fe r  function; Qi is the degree  of the opera tor  p in the denominators 
of the t r ans fe r  functions of the e lements  in the s tabi l izer  section; ni is the 
degree  of the opera tor  p in the numera tor  of the s tabi l izer  t ransfer  function. 

By assumption 

N ,  -N,-I S 2, 

whence 

mi-n,+QL,<2. 

The degree of the equation describing the stabilized section of sys t ems  
with infinite-gain stability is thus given by the inequality 

Qi < n ,  -m,-+2.  (3.75) 

An analogous relationship has  been derived for  single -var iable  sys t ems  
and for  sys t ems  without lag. 
sys tem with t ime lag r ema ins  s table  under indefinite increase  of gain 
i f  and only i f  each subsystem whose gain i s  a rb i t ra r i ly  increased belongs 
to the c l a s s  of s t ruc tu res  with infinite-gain stability. 

iVe thus s e e  that a multivariable control 

§ 3.6 .  
COUPLING THROUGH THE MEASURING DEVICE 

MULTIVARIABLE CONTROL SYSTEMS WITH 

Let  u s  consider a par t icular ,  but 
highly significant, c l a s s  of multivariable 
sys t ems  where the controlled var iables  
a r e  interconnected by the measuring 
device. Transducer-coupled sys t ems  
of this  kind a r e  generally called m u  1 t i  - 
d i m e n s i o n a l  s e r v o s y s t e m s .  The 
case  of sys t ems  consisting of single-loop 
se rvos  was considered in Chapter TWO. 
We now extend the resu l t s  of the previous 
sect ions of Chapter Three  to the case  of 

FIGURE 3.3. 
loop of a control-coupled system. 

Block diagram of the i-th 

a multidimensional se rvosys tem block-diagramed in F igure  3. 3. 

equations describing the dynamics of a multidimensional se rvosys tem 
in Laplace t ransforms : 

Making use of the nomenclature in F igure  3 . 3 ,  we wri te  the s e t  of 

" 

(3.76) 
[Ylc,! ( p ) - - l  (p ) ]+  Z f l k ( P ) ( Y ~ , , , ( p ) - - k ( p ) )  

;g'l 

Q ., i ( p ) Y ; ( p ) = K i  'I [ Y ; ( p ) - - w 1 7 ; ( p ) ] .  mi P)  
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. , . . , . . - 

or ,  eliminating Y ; ( p )  and Y ; ( p ) ,  we have 

The charac te r i s t ic  equation generated by the se t  (3.78) is 

where 

(3.77) 

(3.78) 

= o  (3.?9) 

(3.80) 

The  determinant (3.79) has  the s a m e  s t ruc ture  as the determinant  
(3.48), and our  resu l t s  for  the synthesis  of sys t ems  with infinite-gain 
stabil i ty can thus be  extended in their  ent i re ty  to the case  of multidimen- 
s ional  se rvosys tems.  To  be specific,  if  each component s e rvo  considered 
as a noninteracting sys tem belongs to the class of s y s t e m s  with infinite- 
gain stabil i ty,  the en t i re  multidimensional se rvosys tem will remain  stable 
when the subsystem gains are increased  indefinitely, provided that the 
degenerate equations and the auxi l iary equations of f i r s t ,  second, and 
third kinds comply with the stabil i ty c r i te r ia .  

It is easi ly  understood that the r e su l t s  pertaining to  the synthesis  of 
stable sys t ems  with a rb i t r a r i l y  large loop gains remain  valid in the case  
of sys t ems  with simultaneous plant- and transducer-coupling. The s a m e  
laws a l so  apply when load coupling is additionally introduced. This  case, 
however, is t rea ted  in full  detail  in a separa te  chapter .  

We have thus establ ished the laws of synthesis  of mult ivar iable  contrcl  
sys t ems  which are s table  even though the subsystem gains  are  increased  
indefinitely. 
of these  sys tems.  

In the next chapter  we will t r ea t  on the fundamental p roper t ies  

5 3.7.  
PROPERTIES OF AUTOMATIC CONTROL SYSTEMS 

DERIVATION O F  THE FUNDAMENTAL 

FROM THE D-DECOMPOSITION CURVE 

In subsequent chapters  we will often have to assess the proper t ies  of 
multivariable control sys tems.  The corresponding e s t ima tes  a r e  
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conveniently obtained with the aid of the D-decomposition curve.  According 
t o  the D-decomposition method, the quality of the system is associated with 
the numerical  values of all the relevant indices. 
variation of the sys t em dynamics f o r  var ious gain values; fur thermore,  
all the est imates  a r e  obtained making use of a single D -decomposition curve.  

In the beginning let  u s  consider the evaluation of the dynamic p rope r t i e s  
of single-variable systems.  
to multivariable systems.  

two groups. 
the type 

We can actually t r a c e  the 

At a l a t e r  stage,  the r e su l t s  will be extended 

The t r ans fe r  functions of closed-loop control sys t ems  are divided into 
The f i r s t  group includes symmet r i c  t r ans fe r  functions of 

K,,m = I+w(p) w (P) ( 3 . 8 1 )  

where W ( p )  is the t r ans fe r  function of the open-loop system. 
The second group includes a symmet r i c  t r ans fe r  functions of the f o r m  

( 3 . 8 2 )  

Here  W ,  ( p )  incorporates the external  disturbances and is dependent on the 
point of their  application in the system. 
can also be incorporated in t r ans fe r  functions of this general  fo rm.  

expres s  ion 

The initial control conditions 

Let the open-loop t r ans fe r  function be given by a rational-fractional 

W ( p ) = -  R I  (P) ( 3 . 8 3 )  
Q I  (P) ' 

The character is t ic  equation corresponding to the differential equation 
of the closed-loop system is then writ ten in the fo rm 

( 3 . 8 4 )  

Consider ' the effect on system dynamics of some pa rame te r  T (the 
character is t ic  equation of the system is l inear  in this pa rame te r ) :  

Q (PI 3- rR (PI = 0. 

The equation of the D-decomposition curve fo r  the pa rame te r  T has 

( 3 . 8 5 )  

the f o r m  

r = -  pc/o, ( 3 . 8 6 )  
R ( J U )  ' 

The curve plotted using equation ( 3 . 8 6 )  is a locus of r-values for  

The gain-phase cha rac t e r i s t i c  (i. e., Nyquist diagram) of a closed- 
which the sys t em rema ins  stable.  

loop sys t em in the case  (3 .81)  h a s  the form 

( 3 . 8 7 )  
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o r ,  making use  of (3.85) and ( 3  86), 

(3.88) 

Equation (3.88) r e l a t e s  the frequency response of a closed-loop control 

Let u s  consider the case  when the system gain K is t reated a s  the 
system to the geometry of the D-decomposition curve fo r  the pa rame te r  r .  

paramete r  Z. 
the c a s e  (3.81) is written in the fo rm 

The gain-phase character is t ic  of a closed-loop system in 

(3.89) 

where is the equation of the D-decomposition curve for  the complex K. N ( I w )  
The quality indices of the system which follow f rom the propert ies  of 

the r e a l  frequency response a r e  readily obtained from the D-decomposition 
equation (3.89);:: the gain margin,  the phase margin and the height of the 
peak on the closed-loop gain plot a r e  a lso easi ly  determined usmgth i s  curve.  

FIGURE 3.4. Derivation of the gain charac- FIGURE 3.5. Estimating phase and gain margin. 
teristic from D-decomposition curve. 

F igu re  3.4 is a specimen D-decomposition curve for  the total  gain K .  
The denominator of (3.89) fo r  some frequency mi and a given KO (the gain 
f o r  o = 0) is determined by the vector b c ;  the amplitude value of (3.89) 

f o r  KO and o, is thus determined by the rat io  x. Having found the gain 

amplitudes for  the ent i re  frequency range, we establish the gain cha rac t e r -  
is t ic  of the system. 

ab 

For more details on this subject see M e e r o  v ,  M . V .  Ispol'zovanie krivoi D-razbieniya dlya otsenki 
kachestva sistem avtomaticheskogo regulirovaniya (D-decomposition Curve for Quality Evaluation 
of Automatic Control Systems). - Avtomatika i Telemekhanika, 12,  No. 6. 1951. 



Having selected KO, we can easi ly  find the peak of the closed-loop gain 
plot without f i r s t  constructing the ent i re  response character is t ic .  
a s  the center  of a c i rc le ,  we draw a tangent to the D-decomposition curve.  
The peak of the closed-loop gain plot is then given by KO to the radius  of 
the circle ,  i . e . ,  by the ratio-. ab 

diagram of an open-loop system. 
following way. 
the gain phase plane (F igu re  3.5). 
with the Nyquist plot gives the c r o s s o v e r f r e q u e  n c y  (or the 
c u t  o f f f r e q u e  n c y )  and the angle between the negative r e a l  axis  and 
the segment f rom the origin to the intersection point is the p h  a s e 
m a r g i n  (angle 'p,, in Figure 3.5). 
the open-loop gain-phase character is t ic  is expressed by the relation 

Taking KO 

The phase and gain margin can be easily determined f rom the Nyquist 
The phase margin is found in the 

The intersection of this  c i rc le  
A circle  of unit radius  is drawn around the origin in 

In the nomenclature of equation (3.89) 

(3.90) 

whereas  the equation of the D-decomposition curve for  is given by 

(3.91) 

According to equations (3.90) and (3.91), the phase margin of an open- 
loop system is determined from the D-decomposition curve in the following 
way. A c i r c l e  of radius KO is drawn around the origin in the R plane; the 
angle 'pa gives the phase margin (Figure 3.6). 
without difficulty, since the decomposition curve defines on the plane 
the ent i re  set  of gain values for  which the system is stable.  

The gain margin i s  obtained 

FIGURE 3.6. Estimating phase and gain margin FIGURE 3.7. Construction of the real frequency 
from the D-decomposition curve. response from D-decomposition curve. 

We now proceed to determine via the D-decomposition curve some  
quality indices which follow from the propert ies  of the r e a l  frequency 
response of a closed-loop system. 
real frequency response can be obtained f r o m  a given D-decomposition 
curve in the K plane (we are concerned with the symmetr ical  case,  see 
equation (3.81)). 

F i r s t  let  us  show how the closed-loop 
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We have already shown how to construct the gain plot of a closed-loop 
sys t em from the D-decomposition curve in the R plane. The real frequency 
response is obtained without difficulty i f ,  in addition to the'gain plot, we can 
a l s o  find the closed-loop phase-angle diagram f rom the D-decomposition curve.  

The phase of K s , ( j o )  fo r  some  frequency ai is determined by the phase of 
the denominator in the right-hand s ide of (3.89) a t  that frequency. 
the given frequency oi the denominator of (3.89) is equal to the segment b c ,  
and the phase of (3.89) a t  that frequency is a(o i )  (see Figure 3.6). 

and the ent i re  phase-angle plot of a closed-loop system i s  obtained. 
r e a l  frequency response P (0) is now found without difficulty. At the 
frequency m i  w e  have 

But a t  

The corresponding phases are thus determined fo r  a l l  the frequencies,  
The 

ab 
P (mi) = cos a (a1). (3.92) 

Dropping a perpendicular f rom the origin (Figure 3.7) to the segment b c ,  
we obtain f r o m  (3.92) the r e a l  frequency response a t  ai: 

bd 
P (0,) = (3.93) 

The value of P (0) is obtained by s imi l a r  geometrical  constructions a t  
any frequency, and the ent i re  closed-loop r e a l  frequency response is 
recovered.  

Note that the imaginary closed-loop frequency response is also obtained 

without difficulty; to this  end, it suffices to take the segment ra t io  %(Figure 3.7). 

closed-loop r ea l  frequency response and the D-decomposition curve.  
shall  now formulate some quality indices and show how to find them directly 
f rom the D-decomposition curve in the I plane. 

This  method of construction establishes a relationship between the 
We 

Pfu) 

'Ji 
FIGURE 3.8. Illustrating the definition FIGURE 3.9. Estimating the positive-response 
of the positive-response bandwidth. bandwidth from the D-decomposition curve. 

The posit ive-response bandwidth is defined as the range of frequencies 
f rom a =  0 to the frequency a t  which the real frequency response c r o s s e s  
the frequency axis  fo r  the f i r s t  t ime (F igu re  3.8). 
c r o s s o v e r  f r e q u e n c y ,  we write for  the control t i m e t  

Putting oc for  this  

t > n .  
0, 

(3.94) 
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The positive -response bandwidth is obtained from the D-decomposition 
curve in the following way. 
intersection with the D-decomposition curve.  
intersection point gives the upper bound of the positiveness range (Figure 3.9). 

Other quality indices are s imilar ly  obtained from the properties of the 
r e a l  frequency response: 

(a) F o r  a t ime function x ( t )  to monotonically approach a steady- 
s ta te  value ~ ( o o ) ,  it is necessa ry  (but insufficient) that the D-decom- 
position curve in the I? plane does not meet  the c i r c l e  of radius  

A perpendicular is erected at  the point KO to i t s  
The frequency m i  at  the 

f=- centered a t  the point (F igu re  3.10). 

(b) F o r  the overshoot not to exceed 18% i t  is necessa ry  that 
(1) the magnitude of the vector f rom the origin to the D-decomposition 

curve should increase steadily a s  the frequency inc reases  f rom 0 to 00 

(Figure 3.11); 

(2 )  f o r  a given KO the ci rc le  of radius w c e n t e r e d  a t  

(3) the projection of the vector amj (Figure 3.11) on the K axis  should 

should 

not meet the D-decomposition curve; 

not exceed KO for  m+00. 

close to an a r c  of the circle  of radius  w c e n t e r e d  a t  w, the distance 

between the circle  and the D-decomposition curve subsequently 
increasing (Figure 3 . 1 1 ) ,  the transient time i s  between the l imits 

( c )  If the initial section of the D-decomposition curve i s  sufficiently 

(3.95) 4n 

where (oc is the c ros sove r  frequency. 

FIGURE 3.10. Determination of necessary FIGURE 3.11. Determination of 
conditions for n o  overshoot from the D- de- 
composition curve. sition curve. 

quality indices from D-decompo- 

It is significant that the above-described propert ies  of the D-decomposi- 
tion curve a r e  directly related to the magnitude of the total system gain. 
A number of conclusions can be drawn on the bas i s  of these properties.  
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The following corollary obtains from property ( a )  above: i f  for  r easons  

F r o m  property (b) 
of precision the total system gain is g r e a t e r  than the diameter  ( & + I )  of 
the circle ,  the transient p rocess  carinot be monotonic. 
we have two corol lar ies :  

the system gain should not be g rea t e r  than the pa r t  of the diameter  ( K o f l )  
to the right of the semiaxis  R e K ( F i g u r e  3.12). 

(2) Overshoot will not exceed 18% i r respect ive of the actual gain if  
the D-decomposition curve coincides with the imaginary axis  in the R plane, 
and the ent i re  positive r e a l  axis  belongs to the region of stability. 

(1) T o  satisfy the sufficient conditions fo r  overshoot not exceeding 18%, 

Im i 

a 

FIGLIRE 3.12. Illuqrraring the dererminarion FIGLIRE 3.13. Illustrating the conctruction of the 
of conditions f o r  overshoot not exceeding 18pi;, . closed-loop frequency-reqponse characteristics 

froni D-decomposition curve and auxiliary curve 
(rhc aux i l i a ry  curve is independent of T). 

A corollary which follows from the method of construction of the 
posit ive-response bandwidth has  a considerable bearing on the evaluation 
of the control-system s t ruc tu re .  
boundary of the posit ive-response bandwidth is always l e s s  than arc, 

where ol, is the frequency a t  the intersection of the D-decomposition 
curve with the K axis  (F igu re  3.12) and I<=K,,  is the cr i t ical  gain. This  
corol lary will be applied a t  a l a t e r  stage to der ive some  ve ry  important 
conclusions concerning the efficacy of control s t ruc tu res .  

W e  have already emphasized that the above propert ies  of the D-decompo- 
sition curve pertain to the case  of symmetr ic  t r ans fe r  functions. 
now consider some quality indices of a system with an a symmet r i c  t r ans fe r  
function (3.82). 
corresDonding closed-loop sys t em.  

character is t ic  equation, the general  gain-phase character is t ic  incorporating 
external disturbances and initial conditions has  the fo rm 

It is easily understood that the upper 

Let u s  

F i r s t ,  w e  construct the r ea l  frequency response of the 

Since external disturbances and initial conditions do not influence the 

(3.96) 

The numerator  of (3.96) we call  e q u a  t i o n  o f  t h e a u x  i 1 i a  r y c u r v e .  
In this m o r e  general  ca se ,  the determination of the system propert ies  is 
based on the D-decomposition curve and the auxiliary curve.  
f rom (3.89) that the auxiliary curve is a l so  required in the symmet r i c  case,  

It follows 
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whenever the relevant index i s  not the gain but some  other  sys t em para-  
me te r .  
easi ly  constructed once the D-decomposition curve  fo r  an  a r b i t r a r y  
pa rame te r  t and the corresponding auxi l iary curve  a r e  known. 
is a probable fo rm of a D-decomposition fo rm in the T plane. 
f r o m  the prcceding and direct ly  f rom F igure  3.13 that the vector & gives 
the amplitude value of the denominator in (3.96) at the frequency m i :  

The frequency responses  (the real response  included) can be 

F igure  3.13 
It follows 

The  phase of the denominator in (3.96) at the frequency mi is the angle a(mi). 
Let  the numera tor  in (3.96) be  independent of T ;  a probable auxi l iary 

curve  fo r  this ca se  is shown in F igure  3.13. 
the numera tor  fo r  oi is represented  by the vector  zf. The phase of the 
numera tor  a t  this frequency is p ( w i ) .  
frequency mi is given by the ra t io  of the corresponding segments:  

We fur ther  a s sume  that 

The amplitude value of (3.96) a t  the 

T h e  magnitude of (3.96) a t  any other  frequency is obtained s imilar ly ,  and 
the en t i re  gain response corresponding to  (3.96) is thus recovered. 

The phase of (3.96) is the phase of the numera tor  minus the phase of 
the denominator. 
The vector a%? is translated f rom point a to point c (F igure  3.13) and the 
vec tor  bc is continued as is shown in the figure. 
frequency mi i s  then y(mi) ,  since obviously 

The r e a l  frequency response a t  mi is obtained as  follows. 

The phase of (3.96) at the 

The r e a l  frequency response  a t  the frequency mi i s  

Dropping a perpendicular f rom the tip of the vector c&? to the dashed 
line, we obtain fo r  the r e a l  frequency response a t  m i  

P(0,)=% be 

The real frequency response  a t  any other  frequency is obtained in a 

If the auxiliary curve is dependent on the pa rame te r  T, we proceed a s  
The numera tor  in (3.96) is partitioned into two par t s ,  one 

s imi l a r  way, so that the en t i re  frequency response  of the sys tem is recovered. 

follows. 
independent of t and the other  a function of T. 

written as 
Equation (3.96) is then 

(3.97) 
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Figure 3.14 shows the D-decomposition curve in the ? plane and the 
curve W,(jo).  We now choose any par t icular  value of T, say  ?= 1. We 
can thus find the vector r W z ( j o )  for  any frequency m i .  These vectors  are 

A choice plotted a s  in Figure 3.14. 
of any other numerical  value fo r  z 
only a l t e r s  the scale of the vector 
? W z ( j o ) .  F o r  the given value of z, 
the magnitude and the phase of the 
numerator  in (3.97) a r e  represented 
by the vector joining the origin with 
the tip of the vector z W z ( j o )  a t  the 
correswonding frequency. F r o m  this 
point on, the construction of the f re -  
quency-response character is t ics  
proceeds a s  before, in the case  of 
T -independent numerator  in (3.9 6). 

The method proposed fo r  the 

response suggests the following 
propert ies  of the D-decomposition 
curve and the auxiliary curve,  which 

A. The posit ive-response bandwidth is determined by the frequency oo 

‘5 

FIGURE 3.14. Illustrating the construction Of 
closed-loop frequency-response characteristics 
from D-decomposition curve and auxiliary curve 
( the auxiliary curve is dependent on T). 

construction of the real frequency 

are useful in the preliminary evaluation of control properties.  

a t  which the numerator  and the denominator vectors  a s sume  a mutually 
perpendicular orientation fo r  the f i r s t  t ime. The transient t ime in this 
system, a s  w e  have already indicated, is 

If the c ros sove r  frequency oC is known, the value of T for  which oc 

F r o m  the 
determines the posit ive-response bandwidth is found a s  follows. 
the numerator  vector a m  a t  the frequency oc (Figure 3.13). 
point oc of the D-decomposition curve drop a perpendicular on aN. 
segment ae is the required value of z. 

and the denominator and the angle ~ ( o )  between them remain virtually 
constant,’and i f  subsequently the r a t io  of the two magnitudes dec reases  
while the angle y ( o )  does not dec rease ,  the control t ime lies between the 
l imits  

Draw 

The 

B. If in some initial frequency range the magnitudes of the numerator  

“ < t < F .  421 
0, 

C .  The sufficient conditions for  overshoot not exceeding 18Tc a r e  
satisfied if condition B is met  and the numerator  and denominator a r e  not 
mutually perpendicular a t  any frequency. 

respectively equal distribution of frequencies along the numerator  and 
denominator curves ,  the magnitude of the numerator  dec reases  f a s t e r  
than the magnitude of the denominator a t  the corresponding frequency. 

D. The necessa ry  conditions of no overshoot are satisfied i f ,  for  
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The above propert ies  of the D-decomposition curve (in the case  of a 
symmetr ic  closed-loop t ransfer  function)and the propert ies  of the D- 
decomposition curve and the auxiliary curve (in the general  case of an 
asymmetr ic  closed-loop t ransfer  function) will be used in the sequel. 

O u r  es t imates  can be extended without difficulty to multivariable 
control systems.  
parameter  D-decomposition curve.  
that the dynamic properties of control systems can be evaluated using 
the D-decomposition curves for  subsystem parameters .  

variable in the most  general  ca se  of interaction through the plant, the 
control, and the load. This  expression has  the form 

At the present  stage, we consider the case  of a one- 
In the next chapter i t  will be shown 

In Chapter Two we derived a general  expression for  the j-th controlled 

(2.34) 

The character is t ic  equation of a multivariable control system is 

A = O .  (3.98) 

Suppose that we a r e  concerned with the influence of the parameter  Ti 

of the i-th subsystem on the dynamic properties of the ent i re  multivariable 
control system. 
Under these conditions, equation (3.98) may be written in the form 

Note that the parameter  T~ is a l inear t e r m  in equation (3.98). 

T l A f l +  mlj( - l ) f+’=o,  (3.99) 
G; 

whence follows an equation of the D-decomposition curve in the T{ plane 

( 3.1 0 0) 

Dividing (2.34) by Y(,,,(p)and making use of (3.49), we write 



Dividing the numerator  and the denominator in (3.101) by Aft and putting 
p = j o ,  we write 

Y I ( M  w,,, (14 
Yi rcr (10) - T + D,I (10) ' 

where 

is in fact the equation of the auxiliary curve.  We easily see  that 

$ Ai,(-I)'-] 
~ ~ ~ ( j ~ ) =  ' = lo  l # j  

A 

is the equation of the D-decomposition curve (apart  from the sign),  

and auxiliary curves for  the evaluation of dynamic propert ies  of single - 
variable control sys t ems  can thus be extended to multivariable controls.  

All the previous r e su l t s  concerning the application of D-decomposition 
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Chapter  Fouv  

G E N E R A L  PROPERTIES OF MULTIVARIABLE 
CONTROL S Y S T E M S  WITH INFINITE-GAIN S T A B I L I T Y  

§ 4.1. DERIVATION O F  THE GENERAL EQUATION 

(a )  PROPORTIONAL SYSTEMS 

In the previous chapter we established general  ru l e s  for  the design of 
multivariable control systems which permit indefinitely increasing the gain 
of the various subsystems without losing their  stability a s  a whole. The 
fundamental propert ies  of these infinite-gain stable systems can be 
determined by examining their  matrix equation. 

. .. ~ I 

FIGURE 4.1. 
equation: proportional systems. 

Illustrating the derivation of multivariable control 

Suppose that the controlled variables a r e  coupled through the plant and 
Figure 4.1 is a block diagram of the prototype the measurement devices.  

system analyzed in this section. 
negative feedback element connecting the plant output with the input of 
the measuring device. 
sidered in what follows. 
to the c l a s s  of s t ruc tu res  with infinite-gain stability. 

It follows f r o m  the resul ts  of the preceding chapter that the system 
depicted in Figure 4 . 1  must satisfy the following s t ructural  conditions: 

1) The polynomial alp ( p )  aRi ( p )  is of lower degree than the polynomial 

Stabilization is provided by an elastic 

Alternative feedback configurations will be con- 
The essential  point is that this system belongs 

Dr (P) Dk (PI. (4 .1)  

2) ni -m, 4 r ,+ 9r Q 2, (4 .2)  

89 



where n,, m,, r,, q, a r e  the degrees  of the polynomials F,, (p ) ,  F,, ( p ) ,  Ri ( p )  and 
Q ( p )  , respectively. 

We now derive the equation of the system in Laplace t ransforms.  
A. The equation of the controlled object 

B. The equation of the measurement  device 

C .  The amplifier equation 

X ;  (P) = K i , X ;  (P). 

( 4 . 3 )  

( 4 . 4 )  

( 4 . 5 )  

(4.6) 

We introduce the following notation: 
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Now equation (4 .7)  t akes  the form 

The complete se t  of equations is obtained by putting i =  1, 2,. . .  
The complete se t  of equations can be written in matr ix  form: 

AY = (KtmF, + B) V,,f + N F .  

Here  

(4.10) 

(4.11) 

F r o m  (4.10) we obtain a general  matr ix  equation fo r  the vector value 
of the controlled variables:  

Fu r the r  analysis requi res  explicit expressions fo r  each i-th variable.  
This  can be done along the s a m e  lines as  in ChaDter Two, where a s imple r  
case was considered. 
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The system determinant A is 

y ,  (P) 

1 

I Yn (P) 11 

The t ranspose of matr ix  ( 4 . 1 1 )  is 

All -A21 ... ( - l ) i i l  Ail ... (-1)"" A,[ 

- AI2 A22 Aiz ... (-1)"" A,, 

( - l ) l+"  A,,  ... (-1)"" Ai, ... A"" 

. . . . . . . . . . . . . . . . . . . . . . . . . .  
X 

! l = ~ ( - l ) l t ' A , ,  ... (-1)"' Ai/ ... (-1)"" A,, 
. . . . . . . . . . . . . . . . . . . . . . . . . .  

Making u s e  of ( 4 . 1 3 )  and (4 .14 )  and remembering how the inverse of a 
ma t r ix  is formed,  we write 

II A l l  (-l) '+' A,, ... (-1)"" A,, (1 

I (-1)'" A I ,  . . , (-1)"+' An2 

A A,, ( - l ) f+ '  (-l) '+f Ai, ... (-l)*+'Afl, 
. . . . . . . . . . . . . . . . . . . . . .  - Aiz 

A-' = - 11 ( 4 . 1 5 )  

X (4.16) 
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Performing  the mat r ix  multiplication in the right-hand s ide of (4.16), 
I 

we find 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . (4.17) 

We have thus obtained equations fo r  each  j-th controlled var iable  in an 
n-variable sys tem with plant and t ransducer  coupling: 

I 1 
~ j ( p ) = = ~ ~ ( - l ) ' + l ~ ~ j  ~,tot~mi(~~)~irer(p)+ 

1 = 1  

Equation of the controlled var iables  in a sys tem with plant coupling only 

The equation of the j-th controlled var iable  of an  n-dimensional se rvo-  
is obtained from (4.18) by putting r i a ( p ) =  0. 

sys t em can a l so  be derived f rom (4.18). 
( r e m e m b e r  that A and Ai,, a r e  dependent on a,,,(p) and Ti!+@)). 

The s t ruc tures  corresponding to i n  t e g r a 1 ( o r  f 1 o a t i n  g )  sys t ems  
of necessi ty  contain at leas t  one integrating element which i s  not included 
among the s t ruc tura l  components of the plant and which i s  not enclosed 
by the stabilizing loop 1391.  
corresponds  to a multivariable sys tem with p r o p o  r t i o n  a 1 subsystems, 
s ince the s tab i l izer  embraces  the en t i re  forward path, with the exception 
of the controlled plant i tself .  

It suffices to put in (4.18) a i k ( p ) = O  

The s t ruc ture  shown in F igure  4.1 thus 

F o r  the s teady-state  case  we have 

~,(0)=1;  6,(0)=0; cr(O)=Ki; Fml(0)=l; Fnl(0)=O, (4.19) 

and the i-th controlled var iable  under s teady-state  conditions is thus 
expressed  by the equation 
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where 

(4.21) 

(4.22) 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  ii I < I m r i n + a i n  ... ... l + K n r a r  

All Ai j (0 )  can be found f rom (4.22).  

As an example, let  u s  consider a system with three interrelated controlled 
var iables .  

The steady-state value of any j-th variable can be obtained f rom (4.20).  

To find the steady-state value of the second, we wri te  

whence 

(4.2 5) 

(4.2 6) 

(4.27) 

Substituting (4.27) in (4.25), we obtain af ter  simple manipulations 

I Y ,  (0)  = I - [(K2tolr21 + %I) (1 +K3" - 
- (K2torr23 + a23) (K3rotr31 + %I)] x 
x [ ~ l m c y i r e f ( o ) + ~ l c o t  ( r Z l y l ~ ~ f ( o ) + f Z 3 y 3 ~ ~ f ) + ~ l f l ~ +  

+ [ ( I  +K1tOt)(1 fK3rot) - ( (Klroi~13+u13)(K3iatr3i  +%i)I  x 
X I K ~ r o r Y 2  ref (0) + K ~ t o t  ( ~ z I ~ ' I  ref (0) f ''23'3 ref (0) 1 K~f21- 
- [( 1 + Kltot )  (KZrorr23+ %3) (K1totr13 + '13) (KZrotr21 + %23)l x 
x [K3ro,Y3ref (0) + K3ro, (rzlYlref (0) + ruY3rd (0) ) + K3f3ll. (4.28) 

The steady-state value can now be calculated i f  the numerical  values 
of all the pa rame te r s  are known. Fur the rmore ,  some general  propert ies  
of these sys t ems  under steady-state conditions can be established. 
interesting particular ca se  is provided by an ordinary plant-coupled 
multivariable system having 0 and by a multidimensional servo-  
sys t em with aih= 0. 

An 
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Dividing the numera tor  and the denominator in (4.29) by K,,,,Kz,,,K3,,, and 
taking K l , o t = K 2 t o t = K 3 1 0 f + ~ ,  we find 

It is c l ea r  f rom (4.30) that the accuracy  of each controlled variable 
inc reases  as a l l  the subsystem gains  are increased.  
moreover ,  the coupling between the individual controlled var iables  
vanishes in the limit and they become independent, noninteracting. 
This  resu l t  derived fo r  the par t icular  c a s e  of a three-var iable  sys tem 
is readi ly  generalized to any multivariable control sys tem.  
in the nonsingular ca se  the rank  of the determinant Ai j  is one l e s s  than 
the rank  of the determinant Annand the maximum number of fac tors  Ka,,, in 

i t s  expansion i s  This  product is fur ther  multiplied by Ki lorY i , , f  

so  that 

In the l imit  Y , =  Y i , < f :  

Indeed, 

n K , , , , .  &; 

lim Yj(O)+Y,,.,. 
n 
TI Kiror+” 
i = I  

(4.31) 

Increasing a l l  the subsystem gain pa rame te r s  (which in this  ca se  i s  
s t ruc tura l ly  permissible without loss  of stability) thus ensu res  that the 
con trolled var iable  re ta ins  i t s  s teady-state  value to a rb i t r a r i l y  high 
accuracy  and that the j-th controlled var iable  is independent of a l l  the 
rest. 
and uncoupling i s  achieved to accuracy  of E (we shall r e f e r  to  it a s  E -  

uncoupling). 
a l l  the pa rame te r s  in the equation are known. 

par t icu lar  case of a two-variable control  sys tem with the following 
pa rame te r s :  

If the gain is high but f inite,  the s teady-state  accuracy  is not ideal, 

The value of E can be determined i f  the numer ica l  values  of 

A s  an  example le t  u s  determine the s teady-state  value Y,(O) in the 

K1=500, K2=500, aI2=a2,=0.5,  f l = l ,  f Z = l ,  K , = 2 ,  K,=3. 

From (4.20) for n = 2  we have 

(4.32) 

95 



Substituting, we find 

K,,,,rzl 1 + K2,,, KZlOlrz3 
KJIOfral K3101r3z 1 + K3tol 

It  follows that already for  K,,, = 500 the effect of extraneous pa rame te r s  
( i .  e . ,  the effect  of coupling) in plant-coupled multivariable control system 
is vanishingly smal l  under s teady-state  conditions. 

All aik are zero,  and the determinant is 
Let u s  now consider the case  of a thrcc-dimensional servosystem. 

( 4 . 3 3 )  

( 4 . 3 4 )  

The propert ies  of the controlled var iables  can be elucidated for  the 
par t icular  ca se  of Y,(O). 
and f rom ( 4 . 3 4 )  we have with proper  signs 

A l l ,  A L I  and A J I  a r e  required for  the analysis ,  

I 
I 

1 + Kzrm K31oir3Z 

K z t O ~ r 3 3  1 +Kitoi ' 
Azl = - 1 ~ l m t ~ l z  K3totr32  

I C O C  1 3  1 + K 3 r o r  ' 
( 4 . 3 5 )  
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(b) INTEGRAL SYSTEMS 

Let  u s  now consider a s t ruc ture  with integrating (floating) control. 

For integral control it 
In Figure 4.2 the s tabi l izer  e m b r a c e s  only pa r t  of the forward path, 
which does not include the measuring device. 
is necessa ry  and sufficient that the self-operator R ' ( p )  contain an  integrating 
element, i. e.,  R ' ( p ) = p R ( p )  . 
t ransient  and steady-state proper t ies  of this  configuration. 

We now wr i te  the equations describing the 

_ui 

I T I  I 

I 
FIGIJRE 4.2. 
equation: inregral systems. 

nliisrrating rlie derivation of milltivariable conrrol 

The plant equation i s  as before 

Di (P) Y ,  (P) = Kie-'I'' 

The equation of the measurement  device 

(4.36) 

(4.39) 

Eliminating Y ; ( p ) ,  X ; ( p )  andX;(p) between (4.36) -(4.39), we obtain 
a f t e r  simple manipulations the following equation for Yi(p) : 

[Dl (P) Ri (PI Qi (P)F,, (PI&'P+ K , , 4 R i  (P) Q, (P)pF,,, (p)eTJP+ 
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Putting i =  1, 2 , .  ... n, we obtain the complete s e t  of equations which 
descr ibe the dynamic proper t ies  of the multivariable s t ruc ture  under  
discussion. To reduce the se t  of equations to mat r ix  form,  we wri te  

(4.41) 

o r  in matr ix  notation 

AY =BY, + CF, 

... Rzn . 

... 

(4.43) 

(4.44) 

where 

(4.45) 

We will now derive an expression fo r  the j-th controlled variable. 
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From (4.43) we have 

Y = A-I (BY,,,+ CF). (4.48) 

Expanding (4.48) and proceeding along the s a m e  l ines  a s  in the previous 
case, we find 

a . . . . . . . . . . . . . . . . . . . . . . .  n 

+$ (4.49) 

Here  a l l  rpi.= 1. 
controlled variable:  

F r o m  (4.49) we easi ly  obtain an equation for  any ;-th 

In particular,  in a three-variable sys tem,  we have for the second 
controlled var iable  

We wri te  equation (4.51)  in expanded form: 

H e r e  
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where  

(4.53) 

(4.54) 

IO0 

.- -... - .  .. ... .., .. . I  I. I 
I I 1 1 1  I 



Thus, in addition t o  the general  s teady-state  propert ies  of the sys tem,  
we have derived working relat ions fo r  the determination of the controlled 
var iables .  

I 4.2. SYSTEM DYNAMICS 

We now proceed with a discussion of the dynamic properti.es of pro-  
portional and integral configurations. 

(a) PROPORTIONAL SI’STEAIS 

T h e  sys tem depicted in Figure 4 . 1  will re ta in  its stability when the gain 
pa rame te r s  of the elements in the s tabi l izer  loop a r e  increased indefinitely. 
Th i s  s t ruc tura l  property i s  expressed  mathematically it? t;:? I’ori: (;?e (4 .2 ) )  

n, - mi + ri + qI 2. 

Having chosen a s tabi l izer ,  we make connections that sat isfy the 
s t ruc tura l  cr i ter ion above and thus c rea te  a system. which in principle 
r ema ins  stable despite an indefinite increase  in the subsystem gains. 
To ensu re  realizability, the degenerate and the auxi l iary equation should 
of course  sat isfy the stability c r i te r ia .  Since the s t ruc tura l  stability 
requirement i s  a pr ior i  satisfied,  we have to  choose the s tabi l izer  pa ra -  
m e t e r s  and the gains  of the s tar t ing single-loop sys tem so that a l l  the 
coefficients of the degenerate and the auxi l iary equation meet  the respect ive 
stabil i ty c r i te r ia .  
not oiily the stability but a.lso the des i red  dynamic charac te r i s t ics  (speed 
and t ransients)  of the control system. 

will be assumed throughout that the s tabi l izer  u ses  passive elements only. 
F o r  this reason  the degree of p in the numera tor  of the s tabi l izer  rational- 
fractional function is equal to or  l e s s  than the degree of p in the denominator. 
In o u r  nomenclature, we may thus wri te  

It i s  a t  this stage that we should take s teps  to ensure  

Let  u s  consider the fundamental proportional-control s t ruc tures .  It 

ni <mi. ( 4 . 5 5 )  

F r o m  ( 4 . 2 )  and ( 4 . 5 5 )  it  follows that the degree of the self-operator  of 

We now re tu rc  to equation ( 4 . 7 )  which descr ibes  the j-th controlled 
Let  each subsystem be 

the stabilized section must  not exceed 2 .  

var iable  of the s t ruc ture  shown in F igure  4 . 1 .  
made up of aperiodic and amplifying elements.  
in the following two cases :  e i ther  the self-operators  have the fo rm 

Condition (4.2) is satisfied 

R i ( p ) Q i ( p ) = ( l +  T i r ~ ) ( l +  Tiqp)v 

or ,  if  one of the t ime constants is ze ro ,  we have a genera l  self-operator  
of the fo rm 
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In the f o r m e r  case  
n, -m,=O, 

and in the la t ter  i t  is permissible  that 

n, - m, = 1. 

Let u s  consider the f i r s t  of the two cases .  Equation (4.7) takes the fo rm 

(Di  (P) [(I + Ti r P) (1 + Ti qP) e T i " F m t  (P) + Ki st Fni (P) ellP] + 
n + Ki SI Ki degFmi (P) I  Yi  (P) + K i r o t F i m  (P) k = l  Z r i k  (PI Y, (PI 

k # i  
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The ma t r ix  f o r m  of equation (4.59) is 

A l l  deg -AI:  deg . . * (-1)"" Aln deg . . . . . . . . . . . . . . . . . . . . . . . . . .  
... Y dcg = (-1)"' Ajl deg (-I)'+* A,a deg (-I)'+" Ajn deg . . . . . . . . . . . . . . . . . . . . . . . . . .  

(-1)"" Ant deg ... ... Anndcg 

(4.60) 

X 

(4.64) 

Consider the degenerate vector equation. Since condition (4.2) is 
satisfied, we a s s u m e  that the auxi l iary equation of second kind mee t s  
the stability requi rements  and thus obtain the degenerate case  f r o m  (4.64) 
putting m =  0. From (4.64), (4.63), (4.62), and (4.61) we have 

Ydeg = A$ I Kdeg FrnY,., + BKcr + Ndeg F ] ,  (4.65) 

... 0 

... 0 F,, 

(4.67) 
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X 

b3 = 

1 
- - A  
- _  

bl f KI dcg F l m  KI degFlmr12 - I -  Flnalz 

Kz deg Fzmrzl + F&ZI bz + Kz degFzm 

KI d e g F i m r i 3  +FlnaIa 
K z  degPZmr23 + Fz,az3 , (4.7 1) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(everywhere T i l =  1). 

whence follows the degenerate equation fo r  the j-th controlled var iable:  

(4 .69)  

(4.72) 
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The first s t ruc tura l  conclusion which obtains f rom the genera l  equation 
f o r  the j-th variable as determined via the degenerate equation (4.69), and 
which is likewise applicable to any par t icu lar  ca se  of a degenerate system, 
is the following: a degenerate sys t em of the given s t ruc ture  i s  charac te r ized  
by a multicoupled dynamics. 

by the proper t ies  of the controlled plant ( the coefficients a i h )  and the 
additional interconnections art if icially introduced into the system (the 
coefficients rib). As rega rds  t ransducer  coupling, i t  is artif icial  and is 
thus specified by the particular fea tures  of the technical problem a t  hand; 
the contribution f rom th is  coupling to sys t em dynamics should thus be  
elucidated f o r  each individual ca se  separately.  Note that t ransducer  
coupling is introduced to ensu re  a certain resultant variation of a 11 the 
controlled coordinates as a function of variatioli of e a c h i n  d i v i d  u a 1 
coordinate. 
a change in any controlled variable modifies the setting fo r  all the other 
controlled variables.  However, as is c l ea r  f rom the expressions fo r  A ,  
sys t em stability requirements  should be  kept in mind in choosing rib, 

since the charac te r i s t ic  equation A =  0 depends on rib. 

The coupling between the  controlled var iab les  in this ca se  is determined 

This interrelationship ensues pr imar i ly  from the fact  that 

Let u s  consider t h ree  different c a s e s  f o r  n =  3 ,  snecifically (1) rib = 0,  

C a s e  1. r i h = O . a i R  f O .  
This  case  corresponds to an ord inary  plant -coupled multivariable 

a i h  # o ,  (2)  r f h  # o ,  a i k = O ,  and ( 3 )  r i h  # 0 ,  a i h  # o .  

sys tem.  F r o m  (4.70) we have 

where 

and 

The closed-loop t r ans fe r  function (not generalized, so that f i =  0) i s  

(4.75) 

(4.75') 

(4.75") 

(4.76) 
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Let  u s  find the expression of the D-decomposition curve for  the gain 
fac tor  Kldeg. 
and columns. 
and we therefore  wri te  the determinant A‘ in the fo rm 

The determ-inant A is not affected by interchanging i t s  rows  
This  transposition will  simplify fur ther  manipulations, 

bi +KI degFim FznaZl F3na~~ 
(4.77) I* A3 = Flnalz bZ + K2 deg FZffl F3na3Z ‘ I  Flna13 Fznaz3 b3 + K3 deg F3m 

Expanding (4.77) in e lements  of the f i r s t  row and making use  of (4.75), 
we obtain fo r  the charac te r i s t ic  equation of the system 

[bi ( p )  +KI deg FI, (p)]  ( p )  - F z n  ( p )  aniA;n ( p )  + F3n ( p )  a31 Ai3 (p ) ]  = 0, 

whence follows an equation of the D-decomposition curve for the gain Kldrg 
of the f i rs t - loop degenerate equation: 

Dividing the numera tor  and the denominator of (4.7 6) by FL,,, ( p )  Ail ( p ) .  
we find 

where 

(4.79) 

Equation (4.79) fully specifies the dynamic propert ies  of a three-var iable  
degenerate system. 
sys tem of n plant-coupled var iables .  
fo r  the n-variable case 

A s imi l a r  expression can be obtained fo r  a degenerate 
By analogy with (4.79), we have 

where 
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Equation (4.81) is the equation of the D-decomposition curve for  the 

In (4.80) and (4.81), A;, ( p )  is found f r o m  a determinant of degree n as 

Let u s  consider  expression (4.79) in m o r e  detail. 

gain factor  Kideg of a degenerate n-variable sys tem.  

previously in the par t icular  ca se  of a third-degree equation. 

controlled var iables ,  
For uncoupled 

a i k = O  

and it  follows f rom (4.75) that 

A;? e Ai3 = 0. 

Equation (4.79) thus takes  the form 

(4.82) 

The denominator in (4.82) is a sum of KLJcg plus the equation of the 
D-decomposition curve for  Kid,... 
see that the D-decomposition curve fully descr ibes  the dynamic proper t ies  
of the sys tem in this case  1391. 

Comparison of equations (4.79) and (4.82) shows that plant coupling 
always has  a substantial ilifluence on the dynamics of each subsystem. 
In the general  case,  the effect introduced by coupling may be advantageous 
( i f  coupling improves the dynamic proper t ies  of the given subsystem) o r  
disadvantageous (when the dynamic proper t ies  deter iorate  due to coupling). 

F r o m  the general  equation of the t r ans fe r  function of an n-variable 
sys tem (equation (4.80)) we see that the dynamics of the i-th subsystem 
cannot be determined f rom the D-decomposition curve alone. The D- 
decomposition curve should be supplemented in general  by an auxiliary 
curve ,  the sys tem dynamics being obtained f rom these two curves  joint1.y. 
As  an example, we shall  calculate the fundamental dynamic proper t ies  
of a two-variable system. 

The numera tor  is K I J e g  alone. We thus 

F r o m  (4.80) we have fo r  the f i r s t  controlled var iable  ( n= 2)  

Kl deg (PI = 
YI (P) 
Y,= 

Kl 

Substituting (4.84) in (4.83) we find 

(4.83) 

(4.84) 
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We f i r s t  construct the D-decomposition curve for  KI deg assuming uncoupled 
variables.  Thus, 

DI (P) FnI (P) , = (4.86) KI dcg = - 
- 

F l m  (P) 

We have previously assumed that the stabilized section is s t ructural ly  
representable  as one or two aperiodic elements in series. 
the following t r ans fe r  function fo r  the stabil izer:  

We thus choose 

The plant t r ans fe r  functions fo r  the f i r s t  and second controlled var iables  
a r e  chosen f rom 

(4.88) D, ( p )  = a;p3 + 4 p 2  + a;p 4- ai. 
D, ( p )  = 4 p 3  + a;pZ + 4;p  + ai 

and 

We adopt the following ( a rb i t r a ry )  numerical  values of the coefficients: 

t,=0.3 sec ,  r,=0.2 sec ,  
a;=0.001, a;=0.1, a;=1, a;=1, 

a,. = o.ooo1, a; = 0.001, a; = 0.1, a; = 0.1, 

Kz des = 5, a21 = 0.53 Y,,,, (P) = Yzref(P)- 

Figure 4.3 (curve a )  is the D-decomposition curve in the KldCg plane 
plotted from equation (4.86).  
in this  ca se  can be obtained directly f rom the D-decomposition curve.  

use of (4.85).  

A s  is shown in § 3. 7, the system dynamics 

We now plot the D-decomposition curve and the auxiliary curve making 
The equation of the D-decomposition curve in this ca se  is 

The equation of the auxiliary curve is 

(4.89) 

(4.90) 

Curve b in Figure 4.3 is the D-decomposition curve constructed f rom 
(4.89).  

on the system dynamics. Indeed, since 

ent i re  relevant frequency range, the numerator  of (4.90) is close to K l d e g .  

The auxiliary curve in ou r  par t icular  ca se  has  virtually no effect 

is close to unity in the F I ~  (P) 
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The D-decomposition curve thus provides information not only on system 
stability but a l so  on the fundamental dynamic charac te r i s t ics .  

FIGURE 4.3. D-decomposition curve,  

The D-decomposition curves suggest the following conclusions. 
1. The region of stability of an isoiated systerr  i s  less than that of 

a coupled systeni ( the ilitersection points of curves  a and b in Figure 4 . 3  
are not shown). 

The positive-response bandwidth for the given Ki value in a coupled 
system i s  substantially g rea t e r  thaii that of an isolated system, whence i t  
follows that the dyiiarnic proper t ies  of a coupled system are substantially 
be t te r  than those of an isolated sys tem.  

It i s  c l ea r  f rom the preceding that in the case  a t  hand the system 
should not be made noninteracticg. This  conclusion, however, is by no 
means applicable to other numerical  values of the pa rame te r s .  

The D-decomposition curves a r e  tabulated numerically in Tables  4 . 1  
and 4.2’ fo r  the two c a s e s  being considered. We s e e  that K2de, must  not be 
ignored. Iii constructing the D-decomposition curve for  K,,,,, we put 
KZdeg= 5. A change in this pa rame te r  substantially modifies the trend of 
the curve ( s e e  Tables  4 . 1  and 4 . 2 ) .  The D-decomposiiion curves should 
therefore be  constructed f o r  a l l  K i d e g r  the appropriate value of K i d , ,  being 
picked out in accordance with the problem at hand. 

The choice of the pa rame te r s  may a l so  substalitially influence the 
auxiliary curve,  as is c lear ly  evident f rom Table 4.3. 
our  case  the auxiliary curve can be reduced to a single point, K l d c g .  The 
tabulated data a l so  show to what extent the auxiliary curve can be mani-  
pulated by an appropriate choice of system pa rame te r s .  

2 .  

3 .  

We see  that in 

C a s  e 2 .  r,,#O, ai,=O. 
First le t  u s  write the t r ans fe r  function. In equation (4.70) we collect 

the t e r m s  which contain the fac tors  Y , , % , ,  Y,,,,, Y,,,,. Moreover,  seeing 
that a i k =  0, we put Arl, A;*,  and AY3 f o r  the respective cofactors and wr i te  
A; for the sys t em determinant. 
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TABLE 4.1 

- 
0 

- 

0 

1 

2 

3 

4 

5 

7 

9 

10 

12 

15 

20 

O.OlP+l 

0 

0.286ej7" 

0.51ej59' 

0.667ej4" 

0.763ej" 

0.83eja0 

0.893ejZ6' 

0.93ejZ1' 

0.95ej"' 

0.96ej16' 

0.98e"2' 

0.983eJ9" 

- 

T A B L E  4.2 

- 

1) 

- 

0 

1 

2 

3 

4 

5 

7 

9 

10 

12 

15 

20 

- 

~~ 

I I I I  



TABLE 4.3 

0 

1 

2 

3 

4 

5 

7 

9 

10 

5.0 l e t f f  

5.0 1.03t-J"" 

5.0 1.085eJz1." 

5.0 1.175eJ31s 

5.0 1 . 2 9 ~ ~ 4 1 '  

5.0 1.42eJ"' 

5.0 1.73eJs" 

5.0 2.O7eJ6O" 

5.0 2.23ej"' 

- 

The determinant is given by 

0 l o  

to find A& we f i r s t  write the t ranspose 

whence 

Equation (4.70) reduces to 

(4.91) 

(4.92) 

(4.93) 

(4.93') 

(4.93") 



The  trai;sfer function (ignoring the load) is written as  

Transposing the determinant (4.91) and expanding the t ranspose  in 
e lements  of the f i r s t  row, we find 

-f + K3 degF3m (P) ‘-3iA13 (P)] 

Dividing the numera tor  and the denominator of (4.98) by 

Fim ( p )  A;, ( p )  - KZ degF2m (P) T Z I A ~ Z  ( p )  f K3 degF3m (PI ~ S I A I ~  (PI 

and putting p =  jo, we find 



Here  DK, (io) is the equation of the D -decomposition curve fo r  KI,, with 
i t s  sign r eve r sed ,  defined by the equation 

(4.1 0 0 )  

+ & degF3m (io) r31A13(ja) 

The f i r s t  t e r m  in the right-hand s ide of (4.99) determines the dynamic 
propert ies  of an isolated servosystem. 
f r o m  the D-decom-position curve (4.100). Subsequent t e r m s  specify the 
inf'uence of other s e rvosys t ems  on the one being considered. Since the 
system is l inear ,  the effect of extraneous se rvosys t ems  can be  found by 
superposition. All t e r m s  in the right-hand side of (4.99) have a common 
denominator, and the D-decomposition curve DK, (IO) is thus applicable 
to a l l  the components. 
addition of the auxiliary cu rves  only. 

the i-th se rvo  is found from the general  equation 

These propert ies  can be found 

It therefore suffices to perform geometr ical  

In the general  ca se  of an n-dimensional servosystem, the dynamics of 

(4.101) 

The functions E [ A i k ( j w ) r i A J  a r e  obtained a s  previously for  a t h ree -  
dimensional servo.  
curve fo r  the general  ca se  of an n-dimensional servosystem. 
constructed the D-decomposition curve for  K, deg and the auxiliary curve,  
w e  can choose the appropriate gain K l d e g  which ensu res  system stability 
and desired quality. 

s t ruc tu res  can be drawn f rom (4 .99 )  and (4.101). 

servosystems,  may r a i se  the c ros sove r  frequency of a closed-loop i-th 
se rvo  at  constant gain. 
c ros sove r  frequency of gain in an uncoupled system, wz0 the c ros sove r  
frequency for the same  gain Kldrg in a system with the auxiliary curve 
shown in the figure.  
dynamic propert ies  of each i-th se rvo  in a multidimensional servosystem 
can be bet ter  than those of an isolated i-th servo.  

The expression in brackets  in (4.101) is the auxiliary 
Having 

Some general  conclusions concerning the dynamics of this  c l a s s  of 

1. The auxiliary curve,  represent ing the contribution f rom extraneous 

Th i s  is obvious f rom Figure 4 .4 ,  where 0 1 0  i s  the 

Hence follows a very important conclusion: the 

FIGURE 4.4. Btimating the crossover frequency. 
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2 .  The dynamic propert ies  of each component se rvo  can be adjusted 
by an appropriate  choice of variation of the reference values Y,,ef. 
see  f rom (4.101) that the auxiliary curve of the i-th servo  is substantially 
dependent on the variation of YIref of all  the other  se rvos .  This  in a sense 
provides a s o r t  of control coupling, and in cer ta in  cases  a sequence of 
Ykref values can be programmed in advance to ensure the desired quality 
charac te r i s t ics  of the i-th controlled var iable ,  

As an example,  we calculate a two-dimensional servosystem, which 
i l lustrates the procedure and also validates the above conclusions. 

F r o m  (4.99) we have for  the t ransfer  function of a two-dimensional system 

We 

p=jo  
bl = a o ~ 3 f a l ~ 2 + a ~ p + ~ ~  
b, = a;p3 + a;p2 -t a;p -k a;, 
eo=O.OO1, al=O.l, a , = l ,  a3=1. 
a;=O.ooOl, a;=0.001, a;=O.l, a;=O.l. 
r,2 = r2, = 0.2. 
aI2 = = 0.5. 

Figure  4 . 5  plots (a) the D-decomposition curve for  rt2=rz1=0.2, (b) the 
Figure 4 . 6  shows separately the D-decomposition curve for  r1z=r21=0.5. 

auxiliary curves  for  rt2=0.2 and r12=0.5. 

FIGURE 4.5. D-decomposition curve. 
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The var ious curves indicate that a s  the degree of coupling increases ,  
the D-decomposition curve becomes m o r e  favorable: the range of Kldeg 
values corresponding to a stable system increases ,  and the c ros sove r  
frequency fo r  the same  Kldeg is higher. 
the auxiliary curve can be modified by appropriately changing Y i r c , .  

Fur the rmore ,  in a coupled system, 

I m  4 dcg 

Q: 

0 

8’ 
FIGURE 4.6. Auxiliary curves: 

( a )  ra2= 0.2, (b) r,l = 0.5. 

C a s e 3 .  
System calculations and choice of pa rame te r s  in accordance with 

The general  ca se  r iR # O  and a i k  # O .  

quality specifications can be divided into two separate  stages,  putting 
f i r s t  rik # 0, a i k = O  and then r i k = O .  a i k # O ,  and adding the resul ts .  The 
pa rame te r s  a r e  chosen so a s  to ensu re  the desired system dynamics 
with a view to the t a sk  a t  hand (designing a servosystem, stabilizing, e t c . ) .  

(b) INTEGRAL SYSTEMS 

We shall  establish how the expression for  the j-th controlled variable 
changes when integrating control is introduced in each loop and derive 
working formulas  for  system analysis and choice of fundamental parameters .  

We have previously obtained an expression for  the j-th controlled 
variable in an integral  multivariable system. This  expression is 

1 
y, (P) 

(4.50) 



As in the case  of proportional sys t ems ,  we a s sume  that the configuration 
r ema ins  s t ructural ly  stable as the gain inc reases  indefinitely. 
words,  condition ( 4 . 2 )  is again satisfied.  Stabilization is provided by 
passive elements meeting condition ( 4 . 5 5 ) .  

sufficielit!y l a rge  gain f o r  the stabilized section. 

and putting - ' - -mi we obtain (making use  of nomenclature ( 4 . 4 1 ) )  

In other 

We now derive an equation for  the j-th controlled variable assuming 
Dividing ( 4 . 4 2 )  by Ki 

Ki  5, 

(PI Y i  (P) + bi (PI Yi (PI + Ki dcg F m i  @)Vi  (P) + 
" n 

f Ki deg Fmi  (P) 2 k =  1 (P) +mic, (P) ,?, a i h Y k  (P) + 
k#1 b + i  

f Kigi (P) kx (P) = Ki deg F m i  (P) rcf (P) + 
. -I  

* # I  

+ K i d r g F m i  (P) k = l  E fikYka,(P)+m,ci(P)f, ( ~ ) + U i g i ( ~ ) f j  (P) 
k f i  

( i d ,  2, . . .(  n Kideg ==$:). ( 4 . 1 0 2 )  

Let the auxiliary equation (which may be of f i rs t ,  second, o r  third kind 
in this case)  satisfy the stability conditions. 
stability of the degenerate equation and to choose i t s  pa rame te r s  in 
compXance with system quality specifications. 
stable system with sufficiently l a rge  K i s t ,  the quality of the ent i re  system 
is completely determined by the degenerate equation. 

We have 

It thus suffices to ensu re  

The point is, that in a 

The se t  of degenerate equations is derived f rom ( 4 . 1 0 2 )  by putting m i =  0. 

1 b i  (P) + Ki deg Fmi (P)] y i  (P) t K 1  deg Fmi (P) k =  2 1 r i k Y k  (P) + 
k # i  

n 

$- Kigi (P) 2 k =  1 
e f t  

(P) = Ki deg Fmi (P) y i  id (P) + 
f Ki deg Fun (P) 2 r ,  b (P) Y h  re1 (P) + Kigi (P) fi (P) 

k =  1 
k f i  

( i = l ,  2, . . . ,  n). ( 4 . 1 0 3 )  

In matr ix  form equations ( 4 . 1 0 3 )  a r e  written a s  follows: 

AY = K d e g  FmYref + BY,,, + N F ,  ( 4 . 1 0 4 )  

where 

A =  

( 4 . 1 0 5 )  

( 4 . 1 0 6 )  
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and 

(4.107) 

(4 .I 08) 

(4.109) 

(4.110) 

(4.111) 

The  inverse  A-1 is obtained by the previously outlined method f rom the 
t ranspose A i .  
(4.106) -(4.111) and multiplying, we find 

Inserting f o r  the ma t r i ces  in (4.105) their  expressions 

(4.112) 

where all r i i =  1. 
Hence f o r  the j-th controlled var iable  

The s t ruc ture  of (4.113) is identical to that of the equation of the j-th 
controlled var iable  in a proportional sys tem.  
explicit expressions of the opera tors  in (4.69) and (4.113). 
unnecessary to repeat  the previous manipulations descr ibed in detail  for 
proportional control sys tems.  Integral  sys t ems  can now be  investigated 
and calculated using equation (4.80) with appropriate  expressions inser ted 
f o r  the opera tors  from (4.113). 

control sys tem.  
Here  

The only difference is in the 
It is thus 

As  an example, we proceed with a calculation of a two-variable integral  
Here  ai,+ # 0, r i h = O ;  we thus s t a r t  with working formula (4.83). 

(4.83) 
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Remembering that we are dealing with an integral  system, we will 
determine the expressions fo r  a l l  the ope ra to r s  entering (4.83). F o r  
simplicity a lagless  sys t em is assumed,  and making u s e  of nomenclature 
(4.41) we obtain in the integrating case 

bi = Ri (P)PDi (P) F n i  (PI* 
A;, = 62 (P) + KZ deg F Z m  (P) = RZ (P) PDZ (P) F ~ z  (P) -I- KZ dEg F Z m  (P), 
A;? = - Fznazl. 

Substituting in (4.83), we find 

where 

The equation of the D-decomposition curve fo r  Kldcg is 

For  the sake of simplicity we put 

The calculations are then continued a s  for  a proportional control system. 

5 4 . 3 .  STRUCTURES WITH SEVERAL STA.BILIZERS 

Stabilizers using passive elements  have the obvious advantage that 

On the other  hand, i t  is c l ea r  f rom the preceding 
technically their  design and construction involve neither fundamental 
no r  pract ical  difficulties. 
and f rom the very nature of the passive elements that 

so that the self-operator of the stabilized section of the loop cannot be of 
degree higher than two. 

It is shown in / 3 9 /  that in single-variable control sys t ems  a single 
s tabi l izer ,  though possibly en s u r  ing infinite -gain stability , is insufficient 
for  high-quality operation. This  is so because the degenerate equation is 
of a high degree arid the dynamic propert ies  of the system are inadequate. 
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Systems of rational s t ruc tu re  considered in 1391 posses s  infinite-gain 
stability and an unlimited closed-loop posit ive-response bandwidth. In 
cases  when the initial single-loop system is described by an equation of 
higher than fourth degree,  the desired s t ructure  is generated by intro- 
ducing seve ra l  s tabi l izers  using passive elements.  

s tabi l izers  in the system. 
the system now constitutes a multiloop s t ruc tu re  in each controlled variable.  

In this section we generalize the preceding r e su l t s  to the case  of v 
Owing to the inclusion of numerous s tabi l izers ,  

FIGURE 4.1. A multiloop subsystem. 

Figure 4.7 is a block diagram of the layout fo r  the i-th controlled 
variable.  
through the plant and the measuring devices. By putting subsequently 
rib= 0, we will obtain the equation of an ordinary plant-coupled multi-  
variable system. 

large a r e  stabilized; part  of the measurement  device, par t  of the controller,  
and the plant are not stabilized. 
behavior of the i-th controlled variable in this system is the following. 

In the derivation of the general  equation we allow for coupling 

We as sume  that the v elements whose gain can be made sufficiently 

The s e t  of equations describing the 

The plant equation: 

The equation of the unstabilized par t  of the controller:  

(4.114) 

(4.1 15) 

The equations of the v stabilized elements in No.  1 configuration 1391: 

The  equation of 

V v 

rl[ 1 N i p F p m i  + K~pFnipI X v  rl[ K i p F m i p X 1 1 .  (4.11 6) 
p= 1 p= I 

the unstabilized pa r t  of the measurement  device: 

(4.1 17) 
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Eauations (4.118) are  thus rewrit ten as 



The  ma t r ix  f o r m  of (4.119) is thus 

AY = h ; o ~ 6 Y c C r  + BF, 
whence 

where 

A= 

(4.12 1) 

(4.122) 

The  inverse  A- I  i s  calculated as before.  

direct ly  wri te  the equation f o r  the j-th controlled variable:  
Since equation (4.122) has  the same fo rm as equation (4.121), we can 

Assuming that a l l  Yprc, (with the exception of p = j )  are  known numerical  
values alid that Y j , , ,  i s  the input, we obtain the following expression f o r  the 
t r a n s f e r  function fo r  the j-th controlled var iable  (taking f,= 0):  

(4.12 3) 

This  generalization can be  interpreted as follows. Since the s tab i l izers  
u se  passive elements  where the degree  of p in the numera tor  (n i )  is invariably 
less than o r  equal to the degree  of p in the denominator (mi), i .e. ,  ni<rni, 
the  stabil ized section in a sys tem with a single s tabi l izer  can be  descr ibed 
by a differential equation of not higher  than second degree.  
tion l if ts  this  essent ia l  res t r ic t ion.  It is proved that the stabil ized section 
can b e  descr ibed by  a differential equation of any degree,  provided that 
not  one but n stabi l izers  a r e  introduced. The  number of s tabi l izers  n 
depends on the degree  of the equation descr ibing the stabil ized section. 
If the degree  of this  equation is v, the minimum number of passive-element 

s tab i l izers  f o r  this  loop is n = +. 

Our  general iza-  
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Chapter Five  

COMBINED MULTIVARIABLE CONTROL S ITSTEMS 

5 5 .1 .  INTRODUCTORY REMARKS 

Combined multivariable control sys t ems  a r e  automatic control sys t ems  
with plant and load coupling between the various controlled variables.  
A l l  loads ac t  a s  disturbances on a l l  controlled var iables .  

The present  analysis of combined control sys t ems  is based on two 
principles,  the Watt -Polzunov principle (or  the principle of control by 
deviation) and the principle of load control. 

s t ructure .  In ordinary plant-coupled multivariable sys t ems  the choice 
of s t ructure  reduces to the determination of stabil izer propert ies  and 
points of stabil izer connection to the network that meet  cer ta in  quality 
and functional specifications. 
additionally concerned with the t ransducer  through which disturbances 
are introduced into the control loop and with the connection of i t s  output 
to  the system. 

we should consider cer ta in  invariance a spec t s  of the s t ruc tu ra l  propert ies  
of these systems.  

A simple problem to be considered at  the outset is the choice of rational 

In combined control sys t ems  one is 

Aside f rom the requirements  for  ordinary multivariable control sys t ems ,  

Invariance is dealt with in a special  chapter.  

I 5.2 .  TRANSFER FUNCTIONS 

Figure 5 .1  is a block diagram of a combined control system. 

Fmr (P) 

No 

restr ic t ions are imposed on the elements.  The s tabi l izer  -is chosen 

so that K C i  may increase indefinitely. In general ,  i t  follows f rom the 

r e su l t s  of ChapterFour  that if - is such that the s tabi l izer  should have 

n,>m, ,  R r @ )  can be s t ructural ly  partitioned and seve ra l  s tabi l izers  
introduced; this  approach will not affect the fundamental r e su l t s .  

Rl (P) 

F o r  ~. 

a r e  s t ructural ly  of K c  1 F"1 (P) this  reason the t r ans fe r  functions - &(P) and - Fm1 (PI 
very general  character .  

loop with a t ransfer  function -E- is left unstabilized. 

imposed on this  t r ans fe r  function a t  the present  stage,  but l a t e r  on i t  will 

So as not to r e s t r i c t  the generali ty of our  analysis,  a section of the 

No restr ic t ion is 
Qi (P) 
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turn out that the pa rame te r s  of the unstabilized element should be chosen 
so  that the degenerate equation remain stable a s  K,*-+OO. The sum of a l l  
load disturbances applied to the plant constitutes 'the input of this  element. 

The t r ans fe r  function !@.!& is unknown a t  this  stage, and i t  is therefore  
em1 (P) 

immater ia l  a t  what particular point of the main control loop the output of 

the t ransducer  B,lo is delivered. 
emi (P) 

FIGURE 5.1. A combined control system. 

Our  problem is the following: given a certain quality cr i ter ion 
or a cer ta in  desirable property of the combined control system, 

choose the t r ans fe r  function in compliance with the properties 

of the section between the t ransducer  output and the plant input, 
where the load disturbances are applied. Once the sought property 
of the t ransducer  has  been determined and i t s  t ransfer  function established, 
the connection of the output can be found unambiguously. 

The t r ans fe r  function for  the i-th controlled variable,  according to 
Figure 5.1, is 

o r  

i. e.,  

(5 .1 )  

(5.2) 

(5.3) 
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Taking i= 1, 2 . .  . , we obtain the complete s e t  of equations for  a combined 
In o rde r  to write these equations control system with interrelated var iables .  

(5.5) 

(5.6) 

(5.7) 
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For the sake of simplicity we henceforth omit the argument p,  r e m e m -  

AII ( p )  (--1)1+2A~, (P) ... (--l)'+"Ai, (P)' 
- Aii  (P) Ai1 (P) ... (-I)'+" Am (P) 

A (-l)'+'Ajl ( p )  (-1)1+'Ajz(p) ... ( - l ) l + " A j ,  ( p )  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  A-' (p)  =l- 
. . . . . . . . . . . . . . . . . . . . . . . . . .  
(--l)"+'AnI (P) (--1)"+*Anz(p) . e .  (--1)"+"Ann(p) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(5 .11 )  ' 

I 1  

I1 

F ( p )  = ... If 

f"  

' 
... 

Here p i i =  1 .  

V ( p )  of the controlled variables:  
F r o m  ( 5 . 7 )  we obtain an expression for  the Laplace-transform matr ix  

Y ( p )  = A-' (p)  [ B (P) Yr.r (P) + D @) F ( P ) I .  (5 .9 )  

The matr ix  ( 5 . 9 )  should be represented in explicit fo rm before explicit 
expressions for  each controlled variable can be written. 
the inverse A - l ( p ) .  

F i r s t  we find 
The transpose At is given by 

Q ~ , + K , ~ ~ ~ I  ( C Z ~ +  K c ~ d ~ z ) a l l  ... (Cnn+KCndnn)a,l 

( c I I + K c I d l l ) a I ,  ~ z z + K , & z z  ... (cn,+K.nddana 

( c l l + ~ ~ l d I , ) a , ~  ( ~ z z + ~ e z d s i ) a z ~  ... 
. .  (5.10) 
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(5.13) 

n 

2 (-1)”’Alk Kc k l k k Y &  ref 
k = l  

2 (-1)2+k ’%k K c  d & k Y k  ref 
& = I  

” 

. . . . . . . . . . . . . .  
( - l ) ’+ ’A/k  K c  k l k k y b  ref 

k = l  . . . . . . . . . . . . . .  
” 
2 ( - l ) n + k  A n k K c  k l k k y &  ref 
k = l  

‘ 

+ 

t; 

. . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . .  
(5.14) 

The  expression fo r  any controlled var iable  is obtained f r o m  (5.14) by 
equating the corresponding elements  of the columns in these ma t r i ces .  
The expression fo r  any j-th var iable  is thus written as 

n 

‘1  (P) = 2 ( - l ) ’ + k A / & K c  d & k Y k  ref@) + 
& = I  

(5.15) 

The t ransfer  function is defined as the ra t io  of the Laplace t ransform 
of the output to the Laplace t ransform of the input. 
sys t ems  the t ransfer  function is the rat io  of the Laplace t ransform of the 
controlled var iable  to the Laplace t ransform of the re ference  value, the 
load being ignored. 
dependent on load ( o r  disturbance) fA ( the second t e r m  in the right-hand 
side) is neglected, the output Y i ( p )  depends on a 11 y ~ , ~ ( p ) .  
of a t r ans fe r  function and a generalized t ransfer  function will be ve ry  
useful in  this case .  

In single-variable 

We see f rom (5.15) that even i f  the component 

The concepts 
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The t r ans fe r  function for  the j-th controlled variable is defined a s  
the rat io  of Laplace t r ans fo rms  of the j-th controlled variable to the 
i-th reference value, disturbances being ignored. 

If fi= 0, we have f rom (5.15) 

Defining the generalized t ransfer  function along the same lines a s  in 
single-variable control systems,  we obtain 

The physical content of these expressions fo r  t r ans fe r  functions is 
quite obvious. 
t ransfer  function of a single-variable system; the second t e r m  in (5.16) 
and (5.17) gives the contribution to t ransfer  function from the coupling 
of the given variable to other variables;  finally, the third t e r m  in (5.17) 
shows to what extent the t r ans fe r  function is influenced by self-load and 
by load o r  disturbance in other  controlled variables.  

a r e  conveniently analyzed with the aid of the generalized t r ans fe r  function. 
The character is t ic  equation of the ent i re  multivariable system has  the f o r m  

In what follows we consider some quality aspects  of combined multi-  

The f i r s t  t e r m  in ei ther  expression is the ordinary 

Combined multivariable control sys t ems  considered in this chapter 

A=O. (5.18) 

variable systems.  

§ 5.3. STEADY -STATE OPERATION 

The state of r e s t  is a par t icular  ca se  of steady-state operation. 
s ta t ics  equations for  this ca se  can be derived from the theorem of limiting 
values. A s ta t ics  equation is obtained f rom (5.15) by putting p =  0 .  

The 

W e  consider two different ca ses :  
(a) the case  of proportional subsystems, and 
(b) the case  of integral  subsystems (both in relation to the self-load). 

(a) PROPORTIONAL SUBSYSTEMS 

(5.19) 
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The steady-state equation for the j-th controlled variable of a 
proportional system has  the form 

or ,  making use of (5.19) 

(5.21) 

F r o m  (5.20) we car1 find the steady-state value of the j-th variable for  

Before proceeding to  determine the propert ies  of an n-variable system 
given loads f a ,  if all the system pa rame te r s  a r e  known. 

under static conditions, we shall consider the application of the above 
equations to a three-variable system. From (5.15) with n= 3 we have 
for,  say, the 1s t  controlled variable 

Here 
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The t ranspose in this  case is 

whence 
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indefinitely increasing the gain in any of the subsystems without l o s s  of 
stability. 
increase indefinitely. 

Let the gain pa rame te r s  of all the three subsys tems U c i ,  i =  1, 2, 3, 
Then, as it follows f rom (5.23), 

In other words, indefinite increase in the subsystem gains under steady- 
s ta te  conditions makes  the output equal to the reference value YrCr appropri-  
ately modified by the various disturbances.  

depends on load coupling coefficients p i ~ ( 0 )  and the coefficient e,,(a) 
the particular ca se  e n i ( 0 ) = O ,  which can be implemented without any 
difficulty, we have 

The effect of disturbances 

In hi (0)' 

lim Y ,  (0) = Y ,  (5.25) 

This  resul t  is obtained for  the steady-state condit;ons, since we have 
taken F n j ( 0 ) = O .  
has  been shown in 1391, increase in gain improves the accuracy. 

Two particular ca ses  deserve  special  attention: one is the case  of 
stabilization by proportional feedback and the other the case  of a mixed- 
type stabil izer.  Expression (5.24) c lear ly  does not apply in these cases ,  
and we wi l l  have to consider them separately.  
conclusions thus follow f rom the s ta t ics  of combined multivariable sys t ems  
with proportional subsystems: 

interrelationships between the controlled variables under steady-state 
conditions. 

and i f  en i (0 )  = 0 ,  all disturbances a r e  rejected.  

degree.  In the case  of finite, but sufficiently large gain, we can speak of 
decoupling o r  disturbance rejection under steady-state conditions to an 
accuracy  of E only. In the general case,  the actual output values for  each 
load and for  each se t  of gain pa rame te r s  can be obtained f rom (5.23). 

the disturbances and i t s  own re fe rence  value but a lso on the re ference  
values of a l l  the other controlled variables.  

control sys tem.  
following considerations. 
construction of A and A i j ,  that the highest degree of K , ,  equal to the highest 
degree of K ,  in the expansion of A,  occurs  only in that t e r m  of the 
numera tor  which corresponds to the reference value of the variable itself. 
This explains why s t ruc tu res  of this c l a s s  a r e  inherently capable of 
suppressing the effect of other  extraneous components. 

This  is a natural  assumption because in this case,  a s  

The following general  

1. Increase in subsystem gains leads to decoupling, eliminating all 

2 .  

If the gain factors  a r e  finite, these conclusions a r e  t rue only to a cer ta in  

Increase in gain improves the accuracy of each controlled variable,  

We s e e  f rom (5.23) that each controlled variable depends not only on 

Our conclusions a r e  based on the particular ca se  of a three-variable 
Generalization to n-variable sys tems obtains f rom the 

It is c l ea r  f rom equation (5.22) and f rom the 

(b) INTEGRAL SUBSYSTEMS 

A system is integral  if and only i f  an integrating element is included 
in the corresponding single -loop configuration; the integrating element 
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should be unstabilized and must  not constitute a s t ructural  component 
of the plant 1391. Under these conditions we have fo r  the steady-state case  

Substituting ( 5 . 2 6 )  in ( 5 . 2 2 ) ,  we find 

Inserting f o r  A,, their  expressions and making use of ( 5 . 2 6 ) ,  we find 

( 5 . 2 8 )  

whence 

In other words,  in integral  systems,  without increasing the gain, w e  
find that the steady-state output variable is equal to the corresponding 
reference value plus a contribution f rom al l  the loads. 
e, i (O) -0, the load contribution vanishes under steady-state conditions. 

In general ,  introduction of the factor - makes the variable load 

dependent in integral  sys t ems  also.  In a number of c a s e s  this load 
dependence may prove to be quite profitable. It is actually utilized in 
the so-called compounding systems,  e .  g., an electr ic  power station 
where proportional cu r ren t  feedback inc reases  the voltage of the syn- 
chronous power generators  when the load is increased. 

By reversing the sign of B,Io the load can be made to increase o r  

dec rease  the output value of integral  sys t ems  in comparison with the 
reference value. 

A significant feature  of sys t ems  considered in this chapter is that 
load, o r  disturbance, is used as an additional factor for  imparting cer ta in  
desirable propert ies  to the sys t em a s  a whole and consequently to the 
individual controlled variables.  
that under steady-state conditions the output of both proportional ( fo r  
K,,+co) and integral  sys t ems  depends on the reference value and the 
propert ies  of the t ransducer  and all the loads. 
in particular,  the load can be employed to improve the accuracy, i f  the 

If we select  

em, (0) 

It is c l e a r  f rom equations (5 .29)  and ( 5 . 2 4 )  

In proportional sys t ems ,  
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gain is insufficiently high fo r  meeting the accuracy s tandards.  
c l ea r  from what follows that load can be utilized as an additional powerful 
factor f o r  modifying the system dynamics. 

It will be 

5.4.  STABILITY 

The dynamic propert ies  of multivariable control sys t ems  a r e  defined 
This  equation corresponds to z e r o  initial conditions. by equation (5.14). 

Introduction of nonzero initial conditions will not a l t e r  the s t ruc tu re  of 
equation (5.14), only adding a matr ix  of initial conditions. The re  is an 
almost  infinite var ie ty  of initial conditions, and no one par t icular  s e t  
of conditions can be given prefereizce. However, ze ro  initial conditions 
have certain other advantages than a simple form of the equation. 
of system dynamics with z e r o  initial conditions br ings out those propert ies  
which a r e  deDendent solely on the s y s t e m ' s  s t ructure  and the numerical  
values of i t s  pa rame te r s .  
be used a s  a foundation in the development of system design techniques. 
In what follows we therefore confine our  investigation of system dynamics 
to cases  with z e r o  initial conditions. 

The dynamic propert ies  of any i-th controlled variable a r e  specified 
by equation (5.15). This  equation is used a s  a point of departure  in our 
analysis .  Let u s  f i r s t  consider the stability of combined multivariable 
control sys t ems .  
an ordinary l inear system, is determined by the position of the roots  
of the character is t ic  equation. 
putting the system determinant A equal to zero,  thus; 

Analysis 

This  information is highly valuable, a s  it can 

The stability of a multivariable system, like that of 

The character is t ic  equation is obtained by 

A = O ,  

or in expanded form 

At the outset let  u s  note that the introduction of a t ransducer  
0"i (P) 

( i t s  input receives  the overall  load or disturbance) does not affect the 
stability of a combined control system a s  long a s  a l l  O,,, i(p) have no right-  
half-plane ze ros ,  i. e., if  the t ransducers  themselves a r e  inherently stable.  
Indeed, i t  follows f rom the notation in (5.5) that each of the quantities 
a i ( ,  Dii, cii, and di i  contains the corresponding e,,,< as a factor ,  and e,,i can 
therefore  be taken outside the determinant f rom each row in (5.30): now 
i f  none of these Om!, i= 1, 2, , . . , n, has  right-half-plane zeros ,  the 
stability of the ent i re  system i s  independent of the t ransducer  propert ies .  
This fundamental (though trivial)  property leads to a ve ry  important 
s t ructural  corollary: i f  the s t ructure  of a combined multivariable control 
system ( in  the absence of load) r ema ins  stable a t  indefinitely high gain, 
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the combined control system generated by introducing external  load or any 
other external  disturbance into the original system through a t ransducer  
of a quite general  kind also posses ses  infinite-gain stability. 
res t r ic t ion in this ca se  is the requirement of minimum transducer  phase.  

factors  K C i  be related by the expression K i = q i K ,  a s  in Chapter Four .  
Expanding the determinant (5.30), we write the character is t ic  equation as 

The only 

Indeed, le t  the gain This  proposition can be given a r igorous proof. 

I or dividing through by K: and putting - = m ' ,  w e  find 
K: 

It follows f rom the r e su l t s  of a previous chapter that the difference in 
the degrees  of the adjoining polynomials F N i .  FNi- ,  is determined by the 
subsystem structures .  
the s t ruc tu re  of the combined control system is also stable at infinite gain 

system, so long a s  the t ransducer  through which the load disturbances a r e  
fed complies with the requirement of minimum phase. 

If these s t ruc tu res  a r e  stable a t  infinite gain, 

Introduction of load disturbance thus does not affect the stability of the 

$ 5 . 5 .  DYNAMICS 

The dynamic propert ies  of multivariable sys t ems ,  unlike their  stability, 
depend not only on the poles but a lso on the z e r o s  of the t r ans fe r  function. 
The t r a n s f e r  function of ordinary multivariable sys t ems  is expressed by 
equation (5 .16) ,  and the generalized t r ans fe r  function of combined control 
sys t ems  is represented by equation (5.17). 

precisely,  the s t ructural  features  of system dynamics),  let  u s  a s sume  
that the reference values have the f o r m  of unit s tep pulses (or that a l l  the 
reference values vary according to the s a m e  relation, differing only in 

a s ca l e  factor).  

only a scale  correction. 

right-hand side of (5.17), however, cannot be ignored. 
are thus determined by the generalized t r ans fe r  function (5.17). 

as the gain K.+ is increased indefinitely. assuming fair ly  high gains f r o m  
the s t a r t .  

In o r d e r  to elucidate the dynamic propert ies  of s t ruc tu res  (or, more  

The factor ykr ' f (p )  can therefore  be omitted, a s  i t  introduces 
yi ref (P) 

The factor  - ' entering the second t e r m  in the 
yi ref (PI 

System dynamics 

Let  US establish the dynamic propert ies  of sys t ems  which r ema in  s table  

F r o m  (5.17) w e  now have 
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The s t ruc tu re  of ( 5 . 3 3 )  in relation to a sma l l  pa rame te r  is found by 
expanding the numerator  in the right-hand side of this  equation in t e r m s  
of K,. Since A j k  ( k =  1 , .  . . , n )  are the cofactors of the corresoonding 
elements  in the t ranspose of the determinant ( 5 . 3 0 )  and since all the 
elements  of ( 5 . 3 0 )  a r e  l inear  combinations of K,, the highest degree of K .  
in the expanded cofactors A j k i s  c lear ly  n-1.  Now, since each of the 
t e r m s  in the equation, with the exception of N i f ( p )  which multiply Aih, 
is linear in Kd, the highest degree of K C i  in the numerator  of ( 5 . 3 3 )  is also n. 

Let u s  now concentrate on the construction of the cofactors  A i k .  

the construction of the system matr ix  and i t s  t ranspose i t  is c l e a r  that 
only cofactors of the fo rm A i i  can be expanded into expressions with 
components that a r e  independent of the coupling coefficients ai,,. 
follows f rom the fact  that only cofactors of the fo rm A i i  have diagonal 
e lements  corremonding to  the diagonal e lements  of the original matr ix .  
Keeping these r e m a r k s  in mind, we write the t r ans fe r  function ( 5 . 3 3 )  in 
the form 

F r o m  

This  

1 where m = -. 
Kc 

W e  see f rom ( 5 . 3 4 )  that the numerator  in the right-hand side of ( 5 . 3 3 )  is 
a composite function of system pa rame te r s ,  gains, and loads. Let u s  t r y  
to  elucidate, in as g rea t  detail as possible, the s t ructure  of polynomials 
in ( 5 . 3 4 ) ;  this will enable u s  to reach some conclusions concerning the 
general  s t ruc tu ra l  propert ies  of these systems.  

F i r s t  consider the denominator in ( 5 . 3 4 ) .  Since we work with s t ruc tu res  
which remain stable fo r  K C i - a ,  or ,  equivalently, for  m+O, the degrees  of two 
adjoining polynomials differ a t  most  by 2 ,  i. e . ,  

",, j - " , ,  i f 1  d2. 

Since Ai i  is a triangular determinant constructed f rom elements  of the 
same  ma t r ix  as A ,  with the omission of one row and one column, the 
polynomials ( P N i  obey the same  rule  and for  the degrees  of two adjoining 
polynomials we have 

This  conclusion is obviously also valid for  the polynomials qNai and E N 4 f .  
Let u s  now establish a relationship between the absolute value of the 

degrees  of the polynomials in the numerator  and the denominator. The 
highest degree in A is g rea t e r  than the degree of A i i  by an amount equal 
to the degree of the t e r m  aid+K.bii. F r o m  ( 5 . 5 )  i t  is c l ea r  that the degree 
of a i i ( p )  is g r e a t e r  than the degree of b i i ( p ) ,  so  that the highest degree in 
A is g rea t e r  than the degree of Aii(p) by an amount equal to the degree of 
n i i ( p ) .  Making u s e  of the expression fo r  b i i ( p )  we conclude that the highest 
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degree in h, or equivalently the degree of FNO, is g r e a t e r  than the degree of 
TN,, the difference being "degree ati-degree Fmi(p)Omr(p) . 'I If the 
s t ructure  has  infinite-gain stability and if the additional conditions a r e  
a lso satisfied, the system dynamics is determined by the degenerate 
equation, which has  the general  fo rm 

Let u s  now find explicit expressions fo r  FN,-,, (pN,- , .  QN ,-*, and EN,-n.  
This  will provide u s  with a start ing point fo r  the reconstruction of the 
t ransients  and for  the determination of the fundamental propert ies  of 
sys t ems  with sufficiently high gain. 

related variables,  and then generalize to the case  of n interrelated 
controlled variables.  

where we put n= 3: 

W e  will make the calculations for the par t icular  ca se  of three in t e r -  

The equation for  the 1s t  controlled variable is obtained f rom (5.17), 

(5.36) 
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where 

( 5 . 4 2 )  

( 5 . 4 3 )  

( 5 . 4 4 )  

( 5 . 4 5 )  

The degenerate equation of the 1s t  controlled variable in an n-variable 
system obviously has  the fo rm 

Let us  now derive the formulas  for  the calculation and analysis of the 
dynamic propert ies  of combined control systems.  
we intend to make use  of the D-decomposition curve for  the gain of the 
degenerate pa r t  of the equation of each control subsystem. 

The gain in the degenerate part  of each subsystem is made up of two 
factors ,  the plant gain Ki  and the gain ki of the unstabilized section. 
gain KdegIof the degenerate equation can obviously be al tered by changing pi. 
We w i l l  writeKdegi=p,K,, and hence 

As in Chapter Four ,  

The 

611 (P) = Di (P) F n i  (PI Qi (PI e m ;  (P) + PiKiFmi (P) f’mi (PI = 

= b i ( p ) + K d e g i F m i  (p )@mi  ( p ) .  

In this nomenclature equations ( 5 . 4 3 ) - (  5 .45)  take the form 

( 5 . 4 6 )  b2 ( P )  + P z K z F ~ ~  ( p )  Bm2 ( P )  d33 (P )  a32 
I l b  - dZ2 ( p )  a23 b3 (P) f ~ s K 3 F m a  (P) 03m (P) ’ 

( 5 . 4 7 )  

A - I  

( 5 . 4 8 )  

Interchanging the rows and the columns in ( 5 . 4 2 ) ,  we expand the t r ans -  
posed determinant in elements of the f i r s t  row. 
we thus write 

Using our  nomenclature 

A3b = b1 ( p )  (P)+ kK1Fml (P) em1 (P) (P) - 
- d Z Z  ( p )  %I A12b ( p )  + d33a31A13b (ph ( 5 . 4 9 )  

( 5 . 5 0 )  
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We divide the numerator  and the denominator of (5.41) by K~F,l(p)O,l(p)Ail b ( P ) .  

After e lementary manipulations we obtain 

(5.51) 

where 

This equation can be readily generalized fo r  an n-variable sys t em,  It 
may be used as a working formula in stability calculations and in selecting 
system pa rame te r s  that ensu re  the required performance character is t ics .  

Indeed, the denominator in (5.51) is the sum of the gain piand the 
corresponding D-decomposition curve.  If the D-decomposition curve is 
available ( f rom which the stability of the ent i re  system can be inferred) ,  
the well-known rule  1391 can be applied to directly determine f rom this  
curve the values of the denominator in (5.51) a t  any frequency. The 
numerator  of (5.51) is the equation of the auxiliary curve.  The dynamic 
propert ies  of the ent i re  multivariable system a r e  completely determined 
by the position of the D-decomposition curve and the auxiliary curve.  

f rom which we will t ry  to deduce some general  propert ies  of combined 
control systems.  

As an example w e  consider a two-variable combined control system, 

For n =  2 equation (5.51) is writ ten a s  

where 

(5.52) 
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Inserting fo r  the operators  in (5.52) their  expressions f r o m  (5.5), 
we obtain 

-- Y l ( P )  - P l l ~ + s ( P ) l + Y ( p ) + ~ ( P ) - ~ ~ P ) ,  (5.53) 
YI ref (P) cp (P) 

where 

and in the absence of load disturbance we find 

(5.54) 

(5.55) 

We s e e  that the auxiliary curve is sensit ive to load signals.  

(P) 

The function 

u c a n  be so chosen as to ensu re  a desirable transient.  

been expected, the function -; does not influence the stability of the 

system. If aI2=O, pI2=pz1 # 0, the system dynamics can be improved by 
supplementing the self-load with load f r o m  other subsystems. 

The system dynamics are invariably determined by the D-decomposition 
curve and the auxiliary curve.  

the function !.d@- 
emf (P) * 

that the system dynamics can be al tered between wide l imits  with the aid 

of t ransducers  m. 

A s  it  could have 

2. 
The auxiliary curve is highly sensit ive to 

Hence follows a very significant conclusion, namely 

enr (P) 

I38 

. ., 



3. The equation of the D-decomposition curve can be written in an 
alternative form.  
in the denominator of (5.53), we obtain fo r  the D-decomposition curve 

Carrying out t e rm-by- t e rm division in the second t e r m  

The f i r s t  t e r m  in equation (5.56) is the D-decomposition curve for  pi in 
the uncoupled case,  the second t e r m  gives the contribution f rom coupling. 

Equation (5.56) can be  written in a s t i l l  different form: 

(5.57) 

where 

is the D-decomposition curve for  p2(the gain of the second subsystem).  
D-decomposition curves fo r  pi and p2 can be plotted before we have 

actually decided what a r e  to be used. 

D -decomposition cu rves  enable u s  to determine all  the t e r m s  in 
equation (5.57), with the exception of the t r ans fe r  function O m , @ )  which is 
chosen in compliance with a cer ta in  quality cri terion of the ent i re  system. 
W e  have thus derived a formula for  the synthesis of combined control 
sys t ems .  

with n controlled var iables  a s  well. 

ml (P) 

The method described in this section can obviously be applied to sys t ems  

J 5.6. LOAD REJECTION 

The effects of load and other  disturbances a r e  dealt with in sepa ra t e  
sections of the following chapters .  
combined control system dynamics, however, we cannot ignore this  
problem altogether.  
is a character is t ic  feature  of combined control systems.  

in the sense  of A.A. Andronov, we shall  investigate the complete, and 
not the degenerate equation. 
in the degenerate equation will be given a t  a l a t e r  stage.  

n var iables  which are coupled through the plant (equation (5.15)). 
f rom (5.15) that the load does not affect the controlled variable if 

At this  stage of ou r  discussion of 

It should be emphasized that the load rejection” 

Since load rejection is generally re la ted to the problem of coa r seness  

Suitable working formulas  fo r  load rejection 

Consider the equation of the j-th controlled variable in a sys t em with 
We see 

We are dealing with loads applied to  the plant only. 
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(5.59) 

It is readily seen,  however, that the requirement A j i ( p )  = 0 is inadmissible,  
since,  a s  i t  follows f rom (5.15), Y1,ef is a l so  multiplied by A i , ( p ) ,  and the 
condition A i j ( p ) =  0 would eliminate the ent i re  control system, as well as 
the load. ::: 

Thus load rejection is based on the condition 

o r  

whence follows an expression for  the t ransducer  ratio:  

This  function i s  fa i r ly  difficult to implement since,  as i t  follows from 
(5.61), the degree of &(p) should be g rea t e r  than the degree of emi(p)at 
least  by an amount equal to the degree of the product Ri(p)Q,(p). 
precisely the degree of the section which includes the stabilized component 
R i ( p )  and the unstabilized component Q i ( p ) .  

This is 

The problem, however, is solved very easily by a simple modification of 

s t ructure .  

delivered directly to the plant input. 
in a different form: 

Clearly,  the effect of load is eliminated if  the output of =is 

Indeed, f i r s t  we write equation (5.61) 
Omi ( P )  

(5.62) K , ~  enl ( P )  +-.- K,! F , ~ ( P )  --____ 
Ri (P) Q I  (PI Bmi ( P )  Ri (P) Fmi (P) + ' = O ' 

Now the t ransducer  output is delivered directly to the plant input. 

r e su l t  of this  operation, the factor  before should be divided by the 

t r ans fe r  functions of those elements which a r e  dispensed with in the new 

In the 

b i  ( P I  

* This problem is considered in  more detail in the next chapter. 
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configuration, i. e., the t ransfer  functions ~- "' 
AI@) QI(P)' 

" W e  thus obtain for  

the t ransducer  ratio 
enl (P) (5.63) 

This t r ans fe r  function can be implemented without difficulty. 

As we have already noted, * does not influence the system stability, em[ (P) 
provided that Omr(p) has left-half-plane roots  only. 
Andronov's coa r seness  therefore  does not a r i s e  in this  case.  

The problem of 

§ 5.7.  LOAD REJECTION FOR K c + m  

In the preceding section we showed how to choose the t ransducer  ra t io  
and how to connect the t ransducer  to the system so a s  to ensure complete 
load rejection. 
which a r e  stable for  KCi+w. 

to consider the choice of fo r  this  special  c l a s s  of s t ructures ,  when 

the fundamental dynamic properties of the system a r e  entirely specified 
by the degenerate equation. O u r  a im,  of course,  i s  to achieve perfect load 
rejection. 

Ea r l i e r  we demonstrated the advisability of using s t ruc tu res  
In this section we correspondingly proceed 

F r o m  (5.46) i t  i s  c l ea r  that the load does not affect system dynamics if 

(5.64) PlI (PI + 4, co) = 0. 

Inserting fo r  pi,(p) and d i i ( p )  their  values f rom (5.5), w e  have 

o r  

(5.65) 

This  can be achieved without difficulty i f  the s t ructure  is appropriately 
modified. 

Figure 5.2 (af ter  the element with the t r ans fe r  function A), the lef t -  

hand side of (5.65) is divided by &, and for K , i + w  we finally have 

Indeed, i f  the t ransducer  output i s  connected a s  shown in 

Qi (P) 

(5.66) 

The re  is no need to emphasize that a t ransducer  with this t r ans fe r  

In the general  ca se  of an n-variable system, load rejection is achieved 
function can be built without any difficulty. 

by using s t ruc tu re  configurations shown in Figure 5.2. 
are chosen f rom the condition 

The t r ansduce r s  

_ _ _ -  enI - F~~ (5.67) 
em1 Fm1 ' 
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where i= 1,2,. . . , n. 

which doubles as a t ransducer .  

are delivered directly to the s tabi l izer  input, a s  is shown in Figure 5.3. 
There is no need to adjust the pa rame te r s  of the stabil izer and the 
t ransducer  to achieve matching, as there  is only one s e t  of pa rame te r s  
in question, the pa rame te r s  of the s tabi l izer .  

In practice,  the system can be fur ther  simplified by using a stabil izer 

In this ca se  the load disturbances x$ihfk 
k= 1 

FIGURE 5.2. 
rejection. 

A combined control system with load 

I ~~ I 
FIGURE 5.3. A stabilizer used for load rejection. 

Thus,  fo r  sufficiently l a rge  gain K C i ,  the s t ructure  in Figure 5.3 
ensu res  that the control process  is independent of loads and disturbances 
applied to the plant. 
ferences applied not to the plant but elsewhere in the system will be 
considered separately.  ) 

(The case  of disturbances, loads, and other i n t e r -  
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Chapter Six 

INVARIANCE AND NONINTERACTION IN 
MULTIVARIABLE CONTROL SYSTEMS 

§ 6.1.  INTRODUCTORY REMARKS 

In automatic control sys t ems  one always faces  the problem of eliminating 
the effect of disturbances (loads) on the variation (or ,  in par t icular  ca ses ,  
constancy) of the controlled variables.  
with r e j e c t i o n  of  e x t e r n a l  d i s t u r b a n c e s  acting on the control 
system. 

dynamic system is independent of disturbances,  was formulated by 
N. N. Luzin in 1940, as a generalization of the previous r e su l t s  of 
G. V .  Shchipanov. The problem of invariance was subsequently developed 
by Kulebakin 1 2 6 ,  2 7 1 ,  Petrov 1511, Fel 'dbaum 1661, Kukhtenko 1241, 
and o the r s  (see Bibliography). Rozonoer 1581  reduced the problem of 
invariance to  a variational problem. 

of external disturbances,  the so-called perfect load-rejecting systems,  is 
discussed by Shchipanov 1761.  In l a t e r  r e sea rches  127, 31, 32, 51, 5 6 1 ,  
Shchipanov's r e su l t s  were considered in very great  detail and we now have 
a thorough understanding of his  fundamental contributions, a s  well as  of 
some inaccuracies in h i s  work. 

the load-rejection principle is realizable in r e a l  systems.  Petrov 1511 
formulated the two-channel principle, which provides u s  with a key to 
the design of single-variable sys t ems  with complete o r  par t ia l  rejection 
of external disturbances.  

control systems.  
sys t ems ,  as ide f rom those which, though solved by the general  methods, 
refer to single-variable systems,  a r i s e  f rom the fact that each controlled 
variable is influenced not only by var ious disturbances but a lso by all the 
other  controlled variables:  all the var iables  interact through the plant, 
the measurement  devices (in multidimensional servosystems) ,  and the load. 

of noninteraction, i. e., choice of s t ruc tu res  and system pa rame te r s  
ensuring that the var ious controlled var iables  do not interact,  so that the 
control subsystems fo r  each variable can be considered independently of 
all the r e s t ,  

In other words, we have to deal 

The principle of invariance, when some generalized coordinate of a 

Synthesis of sys t ems  where the controlled variable is entirely independent 

The pract ical  significance of Shchipanov's ideas is due to the fact  that 

In this chapter invariance is considered in application to multivariable 
The character is t ic  problems of multivariable control 

One of the fundamental problems in multivariable control is the problem 
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The problem of noninteraction was f i r s t  formulated by I. N .  Voznesenskii 
110, 111 and he was the f i r s t  to  propose methods for  the selection of 
regulator connections that ensured active control by each subsystem. 
Noninteraction is the subject of numerous Soviet 1 5 ,  6, 21, 1 9 ,  521 and 
Western publications (see Bibliography a t  the end of the book). 

invariance.  
sometimes coincide with invariance c r i t e r i a .  

disturbances does not ensure noninteraction. O u r  task is thus to consider 
the relationship between invariance and noninteraction. 
that invariance in relation to external disturbances does not automatically 
ensu re  noninteraction and vice ve r sa :  noninteraction does not automatically 
mean invariance.  
follows f rom certain physical realizabili ty conditions, and in par t icular  f rom 
conditions of stability of the ent i re  multivariable system. 

The problem of noninteraction is closely related to the problem of 
It is shown 127, 29, 511 that the noninteraction conditions 

It is c l ea r  f rom the r e su l t s  of Chapter Five that rejection'of external  

It will be  shown 

That these problems should be considered separately 

5 6 .2 .  THE PROBLEM O F  NONINTERACTION 

In noninteracting multivariable sys t ems ,  the controlled variation of one 
of the var iables  does not influence the other  var iables .  
in this  s ense  may  be c o m p 1 e t e (or p e r f e c t ) or  alternatively it may 
hold t rue to a certain finite accuracy.  

may be attr ibuted to what we call  technological factors .  
take the system of frequency and speed control in an asynchronous motor .  
Desirable performance character is t ics ,  especially when s tar t ing or 
stopping the motor ,  a r e  ensured hy varying the s t a to r  voltage and the 
supply cu r ren t  frequency according to equations which differ f rom the 
natural  variation of the variable-frequency outputs (e.  g . ,  in a var iable-  
speed synchronous generator) .  

Second, noninteraction may be regarded a s  a cer ta in  dynamic property 
of the system, an organic outgrowth of i t s  s t ructure .  
considerable importance and will be treated separately in the following. 
I will f i r s t  discuss  the fundamental r e su l t s  obtained by Voznesenskii /IO, 1 1 /  
and American authors  1771 and then proceed to analyze my own contributions 
to the subject. 

Noninteraction 

Noninteraction can be considered f rom two points of view. F i r s t ,  it 
As an example,  

This  case  is of 

1. Voznesenskii 's  fundamental r e su l t s  110, 1 1 1  

These r e su l t s  deserve special  attention, a s  they were essentially the 
f i r s t  contributions to the theory of automatic control and laid down a 
foundation for  the design of quality control sys t ems  110, 11, 19 ,  521. 
They also provided a point of departure  fo r  numerous l a t e r  r e sea rches .  

interact  through the plant only. 
c h o o s e  a c o n t r o l  s y s t e m  s u c h  t h a t  n o n i n t e r a c t i o n  o f  
t h e  i n d i v i d u a l  c o n t r o l l e d  v a r i a b l e s  i s  e n s u r e d .  

Voznesenskii 's  r e su l t s  apply to cases  when the controlled var iables  
The problerr is thus stated as follows: 
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The problem is investigated f o r  a multivariable control sys t em 
described by the following se t  of differential equations: 

where ai a r e  constants, yi a r e  the controlled variables,  pi0 are  the steady- 
s ta te  loads, torques, etc., pi are the loads, torques, etc., corresponding 
to the var iab les  yi. 

noninteraction, pi is controlled not by the i-th controller alone but by 
all the interconnected regula tors  jointly. 
is thus described by the following se t  of equations: 

The quantities pi are controlled by the cont ro l le rs  mi .  To ensure  

The behavior of the controllers 

. . .  1 
pn = k,,m, + kn2m2 + .. .  + knnmn. I 
~ , = k , , m , + k , ~ m ~ + -  $-kl ,m, ,  
p 2  = k2,ml + k2,m2 + . . .  + kznmn. . . . . . . . . . . . . . . . .  , (6.2) 

where kih gives the  effect of the k-th controller on the i-th pa rame te r  p i .  

is provided fo r  each variable.  Ideal t ransducers  are  assumed,  satisfying 
the relations 

In a system with controlled variables a measuring device (a  sensor )  

y1 = (6.3) 

where i =  1, 2 , .  . . .  n. The various controllers a r e  described bytheequations 

Here f , h  a r e  the t ransfer  numbers  between the measurement  devices zk and 
the controllers m i .  These a r e  the numbers  to be determined i f  noninterac- 
tion is to be ensured. 

Inserting for mi in (6.2) their  expressions f r o m  (6.4), we find 
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The coupling coefficients l i k  a r e  chosen s o  that all the s u m s  of the 
products kps lsq ,  p # q ,  vanish, i. e., 

n 

* = I  x k  ps I sg -0 - fo r  q + p .  (6.6) 

In (6.5) there  are n(n+ 1 )  unknown coefficients, whereas (6.6)  provides 
only n ( n  -1) equations for  these coefficients (ncoefficients of the fo rm 
lio and n coefficients of the form kii  a r e  not included). 
missing equations is thus 

The number of 

(n + 1) n - n (n - 1) = n2+ n - n2 + n  = 2n. 

The 2n missing equations can be obtained f rom the following conditions. 
Making use of (6.6),  we write (6.5) in the form 

If the control domain f o r  the given range of pi0 is denoted by 

 AIL^ = pi m a l  - Pmint 

the coordinates of the measurement  devices by zImln and zimlx respectively, 
and the i r regular i ty  coefficients by 

(6.8) 

(6.9) b,= Y ~ m a x - Y ~ m l n  

YlO ’ 

we can make use of (6.3) to obtain af ter  simple manipulations 

(6.10) 
. . . . . . . . . . .  I 

n I Ap, = - 2 k,,l,, . n, 

If Api and d i  a r e  known, the se t  (6.10) provides n additional equations. 
Now the l a s t  n missing equations are obtained by substituting the steady- 
s ta te  values pio that correspond to the steady-state controlled var iables  yio 

f o r  pio in (6.7) and remembering that z , , = k :  
nl 

s-l  sr1 

. . . . . . . . . . . . . .  
(6.11) 
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Equations ( 6 . 6 ) ,  (6.10), and (6.11) give n(n+I)  equations in n ( n + l )  

Solving these equations for  f i j ,  we find 
unknowns, l i o , .  . .~ I I , ,  I,, . . . , &n,. . . , In,,. 

A =  

(6.12) 

k,' k'l  .. . kin  
kli k i i  ... kin . , . . . . . . . 
kJi k j i  . .. k j ,  
knI km . . . knn 

2. The method of Boksenbom and Hood 1771  

Boksenbom and Hood 1771 published their  r e su l t s  in 1949 and they a r e  
essentially s imi l a r  to those of Voznesenskii. 
mathematics of the solution. Almost all l a t e r  Western publications in this  field 

181, 82, 77, 78, 79, etc.1 a r e  based on 
the original paper of Boksenbom and Hood*, 
and we therefore proceed with a detailed 

with i controlled (dependent) var iables  y. 
which a r e  henceforth r e fe r r ed  to a s  output 

ent inputs x (Figure 6.1). 

The only difference is the 

#, 
Y2 analysis of their  method. Consider a plant 
yi 

xz---- 
Xa 

FIGURE 6.1. A multivariable controlled var iables  or  briefly Outputs, and n independ- 
object with n inputs and i outputs. 

=77-E 
With the exception of the book by MesaroviC 1851 . mentioned in Chapter Three. 

147 



If each output is dependent on a l l  the inputs, we may write the following 
s e t  of equations in Laplace t ransforms:  

(6.13) 

or  
n 

Y i = z F , , X , ,  i = l ,  2, .... i .  

The ope ra to r s  E ika re  the t r ans fe r  functions between the k-th input and 
the i - th  output. 

FIGURE 6.2. Schematic represenration of 
the controlled object (see Figure 6.1). 

Equation (6.13) may be written in ma t r ix  form (Figure 6.2). Each ma t r ix  
element Etk stands for the corresponding t r ans fe r  function. 
if ac t s  on i t s  own column and, upon multiplication by the elements  of that 
column, gives the output sum in the corresponding row. 
f i r s t  column: i t  is multiplied by each element of that column, the products 
a r e  added up, and the sum is the output written in the f i r s t  row. F r o m  
the general  matr ix  E we isolate the f i r s t  i columns, this  being the number 
of dependent (controlled) outputs, and form an i X i  square matr ix .  

this  reason n - i inputs can be manipulated a s  desired.  

variable.  

Each input a s  

Thus Xi a c t s  on the 

It is assumed that with n inputs only i<n outputs a r e  controlled. 

F igu re  6.3 is a functional diagram of a control system for  a single 

For 

The controller outputs X i  a r e  represented by the se t  of equations 

(6.14) 



F i r s t  note that the controller outputs depend not only on the deviations 
of the respective controlled variables but a lso on the deviations of all the 
other var iables ,  and equations (6.14) a r e  analogous in this s ense  to 
equations (6.2)  in Voznesenskii’s method. 
contributions f r o m  the slack inputs Xi+,. etc., a r e  added. 

The only difference is that 

Controller 

Disturbances 

Setting )’ Plant 

FIGURE 6.3. A single-variable control system. 

An obviously interesting approach is to use  the s lack inputs a s  additional 
control factors .  
form: 

Equations (6.14) can be written in the following abbreviated 

(6.15) 

Figure 6.4 is a matr ix  representation of (6.15). The controller ma t r ix  
is interpreted in the same  way a s  the plant matr ix  in Figure 6.2.  
inputs Y-I-’ and X - X  ac t  on the columns and the row outputs are X. 
input is multiplied by a l l  the column elements,  and the sum of these products 
in each row gives the corresponding output. 

The 
Each 

FIGURE 6.4, Schematic representation of 
a controller. 

A complete control system is obtained, when the previous equations are 
supplemented with the equations of measurement  devices and servomechanisms. 
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F o r  the measurement  devices  we may wri te  
- 

1 Yv = 4vYv 
( v = l ,  2 ,  . .., i), 
x, = L,,X, 

( p = i + l , i + 2 ,  ..., n). 
(6.16) 

In what follows i t  is generally assumed that each independent var iable  
h a s  i t s  own servo,  which is actuated by the corresponding signal R. 
Introducing the dis turbances f k ,  we wri te  

X k = s k k x k + f k  ( k = l .  2 ,  .... n). (6.17) 

We have thus obtained the following se t  of equations fo r  a multivariable 
control sys tem 

The plant equation 

Y,=~~,E,~x~ 
The controller equation 

" 
( j =  1, 2, . . ., n). 

The equation of the measurement  device 1 - - 
Yv = L,, Yv. x, = L,,X, 
( v = 1 ,  2 ,  ..., i; p = i + l ,  ..., n). 

Servo and disturbances 

X k = s k , x k + f f ,  ( k =  1, 2 ,  . . ., R) .  

(6.18) 

This  se t  can be represented,  as before, in mat r ix  form.  If the plant 
has  three controlled var iables  (dependent outputs) and five independent 
inputs, the corresponding mat r ix  is shown in Figure 6.5. 

Three Y settings 

Matrix representation of plant and conrroller. FIGURE 6.5.  
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Solving (6.1%) f o r  the controlled variable Y i ,  we find 

Now that the system equation is available, we can proceed with the 
problem of noninteraction. 
considered in 177 1. 
in Figure 6 . 6 .  

Several different kinds of noninteraction a r e  
The corresponding matr ix  representation is given 

System matrix 
- - 

FIGURE 6.6. Illustrating noninreracrion conditions. 

Noninteraction is f i r s t  considered in i t s  most elementary sense:  the 
output Y i  is changed only by changing the setting Y i r c f ,  and none of the other 
variations affects this quantity; alternatively by changing the setting Y t c c f  
we change only one controlled variable Yi, or ,  in general, each controlled 
variable is affected only by the variation of i t s  own setting and is independent 
of other reference values. 

Noninteraction is obtained if  and only if  the system matr ix  is diagonal. 
The noninteraction condition is thus that a l l  the nondiagonal elements of 
the system matr ix  a r e  zero.  For i =  1, 2,. . . , i and i # t we have 

**, i E S C - 0  l k  k k  k f  - (6.21) 

and f o r  a l l  the others ,  f r o m  p = i + 1  to n, 

S,,C,r = 0 (6.22) 



or  

c,, = 0. (6.23) 

Equations (6.22) and (6.23) show that f r o m  p = i +  1 t o  p = n ,  the elements 
of the I-th column in the ma t r ix  C are all zero .  The s a m e  conclusion 
obtains f r o m  (6.21) f o r  the elements of the column f f rom j =  1 to j = i  
(when j # l ) ,  i. e., 

k = ,  2 E . S  Jk k k  c k t -  -0. (6.24) 

Relation (6.24) yields i-1 equations in i unknowns, and we m a y  thus 
wr i te  a relationship between any two e lements  of column t in ma t r ix  C. 

We now proceed to  es tabl ish the nor'interaction conditions in explicit 
form. 
t h e  t e r m  with the setting Y t  and wr i te  

Returning to equations (6.19) and (6.20), we isolated in (6.19) 

(6.25) 

and 

In o r d e r  f o r  the setting Yi to influence only the controlled var iable  Y j ,  
j = l ,  without interacting with the other  outputs, it  is necessa ry  that 

Moreover, in (6.26) only the las t  t e r m  m a y  depend on Y l ;  all the other  
t e r m s  should vanish, i. e., 

S k k C R v = O  f o r  Y # t ,  (6.28) 

or 

where 

k = i + l ,  . . . ,  n. 

Making use of Kronecker ' s  delta 

b , ,=Q f o r  i + k ,  
b i k =  1 f o r  i = k ,  
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we wri te  (6.27) in the form 

(6.29) 

For  any given (fixed) I, equation (6.29) gives i -  1 l inear  a lgebraic  
equations in i unknowns SkkCkf,  k = 1, 2 , .  . . , n .  
descr ibe the relationship between these unknowns but do not determine 
their  actual values. 

IE;kI for  the cofactor of the element E ~ A  in the determinant 1 

Equations (6.29) therefore  

We make use of the following known property of determinants. Putting 

mat r ix  I I E * ~ ~ ,  we may wri te  
1 

IE* I of the square  

(6.30) 

and 

Multiplying the two s ides  of (6.29) by IE;II and summing 
i= 1, to j = i ,  we find 

Making use of (6.30') we now wri te  for  k = l  

In par t icular ,  

Dividing (6.32) through by (6.33), we find 

(6.30') 

over  j f rom 

( 6 . 3 1 )  

(6.32) 

(6.33) 

(6.34) 

We have obtained a relationship in which the nondiagonal mat r ix  e lements  
are expressed  in t e r m s  of the diagonal e lements .  Choosing the t ransfer  
function SC f rom (6.29) and (6.34) we ensure  the necessary  and sufficient 
conditions of noninteraction. 
f o r  the case when the number of inputs is equal to the number of outputs. 
In o u r  case ,  however, the number of inputs is g rea t e r  than the number of 
outputs, and we should fur ther  consider the choice of C'. 

T o  this end, noninteraction of the var iables  p = i + l ,  . . . , n should be 
ensured.  Along the same l ines  as for  y,, j =  I ,  . . . , i , i t  is proved 1771 
that  the noninteraction conditions for  j=i+ 1, . . . , n are  satisfied if the  

The problem of noninteraction is thus solved 
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t r ans fe r  functions of the matr ix  C' are chosen f rom the following relations:  

(6.35) 

( i = l ,  ..., i, r = i + l ,  i +2 ,  ..., n). 

Summing up, we write the conditions of complete (perfect) noninteraction 
fo r  any variable in the form 

c,, = 0, 

where 

p = i + l ,  ..., n, 
t = l ,  2 . . . . ,  i, 

c;, = 0, 
p=i+1 ,  ..., n ( P L f ) ,  
r = i + l ,  ..., n, 

where 

and 

( i= l ,  2 ,..., i, r = i + l .  ..., n). 

This  concludes our  discussion of the principal r e su l t s  obtained by 
Boksenbom and Hood. Fur the r  developments by Western authors  a r e  
mainly based on these resul ts .  
authors  181, 8 2 ,  78, 791, since they a r e  of no fundamental interest  in 
connection with the problem a t  hand. 
preceding discussion of noninteraction conditions which is relevant for  our  
analysis  of the problem is that neither the f i r s t  (Voznesenskii 's  method) 
n o r  the second (Boksenbom and Hood's method) approach discloses  the 
s t ructural  features  of noninteraction, so that neither is suitable for  
elucidating the s t ruc tu res  in which noninteraction is attainable. 

We will not consider the methods of other 

The main conclusion f rom the 

6 . 3 .  NONINTERACTION AS A DYNAMIC P R O P E R T Y  
OF A CERTAIN CLASS O F  STRUCTURES 

We now consider multivariable control sys t ems  with controlled var iables  
interacting through the plant, where the nature of coupling is determined 
by plant properties.  The system compr i se s  n variables,  each constituting 
a closed-loop control subsystem. We shall  d i scuss  a number of different 
cases. 
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ri C a s e 1. Controlled objects described 
by f i r s t  -order  differential equations and 
ideal controllers.  

by a f i r s t -o rde r  differential equation. 
control lers  being ideal, their  t r ans fe r  

Let each controlled variable be described 
The 

functions are s t ructural ly  equivalent to 
gain pa rame te r s  for  each variable.  
c l ea r  f rom § 6.1 that t h i s  is the control 

FIGURE 6.7,  
its individual controller. 

The i-th control loop wirh It is 

system investigated by Voznesenskii. 
Each single -variable subsystem can 

be replaced by a structurally equivalent aperiodic loop (see Figure 6.7). 
The p rocesses  in this system a r e  described by the following se t  of 
differential e quat ions : 

(6.36) 

where T i  is the t ime constant of the plant in relation to the i-th controlled 
variable,  Ki  the plant gain in relation to the i-th variable,  K.i the controller 
gain for  the i-th variable,  a,k  coefficient of coupling between i-th and k-th 
controlled variables.  Here a , k  is a function of plant properties;  i t  may be 
a constant or a function described by a differential equation, 

conditions, we obtain 
Laplace-transforming equations (6.36) and assuming z e r o  initial 

n 

[Tip  + 1 + KiKc i l  Yi (P) + Ki Z a< ,  (P) Y, ( P I  = 
i = l  
I#& 

KJKIY, , ,  (PI + K i f ,  (P)  (i = 1 3  2 , . . . (  n). (6.37) 

To prevent l o s s  of generality, the coupling coefficient is written a s  a function 

of the operator  p .  Dividing the i-th equation by KCi and putting KT=m, we find 1 

Imi (TtP f 1) + Kil yi ( P ) f m i K i  2 a i k  (P) y k  (P) = 
k = l  

k f i  

= KiYi,, (P) + miKtfi ( p )  (i = 1, 2 , . . .  ( n). ( 6 . 3 8 )  

Let u s  f i r s t  consider the case  a a ( p )  =air = const. If the control ler  gains 
a r e  sufficiently large,  i. e., KCi-+oo and mi+O, we see f r o m  (6.38) that in the 
l imit  the i-th controlled variable depends only on i t s  reference value Vi,,(p) 
and is independent of all other controlled variables.  
of each subsystem, we uncouple the var ious controlled var iables  in the 

sense  that, to  accuracy of m i = K ,  the controlled var iables  no longer 

interact  with one another; we have thus achieved noninteraction to accuracy 
m i .  This  conclusion, however, does not mean much if not supplemented 
by information on system stability. 

Increasing the gain 

1 
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m (1 + TIP) +KI  mKlalz  ... mKlaln 
&ma?, ~ ( T z P +  I ) + &  ... ~ K z ~ z ,  

mKnan, mKnanz *.  . m (1 + Trip) + Kn 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

It is expanded to the fo rm 

= 0 .  (6.39) 

where the subscr ipt  of F indicates the degree of the polynomial. 
f r o m  Chapter Three that the system is stable a s  m + O  i f  and only if the 
degenerate equation F , ( p )  = 0 and the auxiliary equation (of the f i r s t  kind in 
this  case)  each satisfy the respective stability conditions. Here i t  c lear ly  
suffices to tes t  fo r  stability the auxiliary equation only. 
manipulations it takes  the form 

It follows 

After simple 

n 

TI ( K ~  + T,pm) = 0. (6.40) 
1=1 

This  is a product of n factors  each character iz ing an independent 
damped p rocess  fo r  the corresponding controlled variable.  
is thus stable.  

The system 

The roots  of the auxiliary equation are 

(6.41) 

which shows that high gain ensu res  high system stability, i. e.,  high-speed 
response,  as well a s  high steady-state accuracy and noninteraction. 
Moreover,  high gain "suppresses"  the external disturbance f i .  

case  noninteraction is supplemented by excellent dynamic propert ies  of 
the system as a whole. 

Suppose that we 
are interested in improving the dynamic propert ies  of the system. 
this  end the subsystem gains are increased. 
a certain constant, the system dynamics at  sufficiently small  m ( large K,i )  

is completely determined by the propert ies  of the auxiliary equation. 
is c l ea r  f rom the expression for  the roots  of the auxiliary equation 
(relation (6.41)) that the sma l l e r  the pa rame te r  mi the f a s t e r  is the transient 
response of the system, i. e., system dynamics is improved by rais ing 
the subsystem gains. At the same  time uncoupling is achieved and the 
p rocess  is separated into n independent (noninteracting) processes .  

Noninteraction is thus derived a s  a dynamic property of the system 
a t  high gain, r ega rd le s s  of whether we are concerned with this  par t icular  
aspect  o r  not. 

C a s e 2 .  
differential equations in each controlled variable.  

In this 

The r e su l t s  a l so  admit of a different interpretation. 
To  

Since F o ( p )  in this ca se  is 

It 

The plant and the controller a r e  described by f i r s t -o rde r  



Kci 42 Figure 6 . 8  is the s t ructural  block 
rt7;:p I’T1p diagram of this  case.  The plant and 

~ ~ n:i z e r o  initial conditions, we write the (?F?!?f FIGURE 6.8. The f-th control loop with a following se t  of equations in Laplace 

the controller are represented by 
aperiodic elements with t ime constants 
T i  and Ti and gains Ki and Kct. ZU,” v, Assuming 

controller described by a first-order equation. transforms for this system: 

( 6 . 4 2 )  

1 Dividing each equation in ( 6 . 4 2 )  by Kcland putting = = m i ,  we obtain 
n 

[ m i ( l +  T i p ) ( l +  ~ k ~ ) + ~ i l Y i ( ~ ) + m i ~ i ( ~  + ~ ; p )  Z a l b @ ) Y b @ ) =  

k% 

= w,, i (P) -I- mui (1 + r ip )  f i  (PI (i = 1 > 2 , ..., n). ( 6 . 4 3 )  

Here we also take a i k ( p ) = a i k ( 0 ) .  F o r  mi+O the degenerate par t  of the 
s e t  s epa ra t e s  into n independent ze ro -o rde r  equations, i. e., s t ructural ly  
the control system is representable by n noninteracting subsystems.  

tes t  the auxiliary equation for  stability. If a l l  the mi are of the s a m e  
o r d e r  of smallness ,  the character is t ic  equation is finally written in the form 

To find the 2n roots which recede to infinity as mi-+O, we have to 

m”Fz,, (p )  + m”-’Fz,,-z (p )  + . . . + 
where the subscr ipts  of F indicate the degree of the corresponding 
polynomial F ( p )  . 
of the second kind in this case.  
following the procedure of Chapter Three.  
we write it in the form 

(p )  = 0, ( 6 . 4 4 )  

It is c l e a r  f rom ( 6 . 4 4 )  that we will be dealing with an auxiliary equation 
The auxiliary equation is constructed 

After some manipulations, 

( 6 . 4 5 )  

Since T i ,  
sat isf ies  the stability conditions. 
transient response of the system consis ts  of n mutually independent 
t ransients  corresponding to independent, noninteracting variation of 
the n controlled variables.  

variables is attained by increasing the subsystem gains. 

magnitude and can be put equal to one another.  
restriction, since the controller gains can be adjusted accordingly. If, 
however, the controller gains are different,  they a r e  all represented by 
a single combined gain factor (as in Chapter Three).  The r e s t  of the 
analysis  proceeds along the same  lines as before, i. e., an auxiliary 
equation is drawn up, i t s  coefficients incorporating the proportionality 
coefficients introduced, and is tested f o r  stability. 

T i ,  and Kt a r e  always positive r e a l  numbers,  equation ( 6 . 4 5 )  
F r o m  ( 6 . 4 5 )  we also see that the 

In this more  complex case,  noninteraction of the individual controlled 

A s  in Case  1 we have assumed that K.i are a l l  of the s a m e  o r d e r  of 
This  is a n  inconsequential 
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Without going into the detailed manipulations, we note that the preceding 
conclusion concerning noninteraction attained by increasing the subsystem 
gains remain valid in sys t ems  where the control lers  are s t ructural ly  
representable  by integrating elements  1391. 
there  is no  need to  impose any restr ic t ions on the t ime constants of the 
integrating elements  (servomotors) ,  as  is done, e.g., in 1 5 2 1 .  

For noninteraction, however, 

C a s e 3.  Noninteraction with ideal derivatives. 
Consider the general  case ,  when the plant is described by an  i-th 

o rde r  differential equation in each controlled variable, and the unstabilized 
control ler  by a j-th o rde r  differential equation. 

into each subsystem according to the ru les  derived in Chapters  Three 
and Four .  

the controller,  K,i the control ler  gain and Ki the plant gain, a l l  in relation 
to the i-th controlled variable. 

in this system. 

High-gain stabil i ty is ensured by introducing n -2 derivatives (n=i+j) 

Let  Di(p) be the self-operator  of the plant, M i ( p )  the self-operator  of 

We proceed to der ive a se t  of equations describing the control processes  

The plant equation for  the f i r s t  controlled variable is 

(6.46) 

The control ler  equation: 

M~(p)X;=Kei[Xi,=r-~i-((aiop"'-~+a~~p"'-~f.. . +ain-ip)Xi]. (6.47) 

Inserting f o r  Xi in (6.46) i t s  expression f rom (6.47) and proceeding to  
der ive equations for  the other  controlled var iables ,  we finally obtain 

where 

(6.48) 

F o r  sufficiently la rge  K c i  the equations in (6.48) degenerate to mutually 
Thus, for  Kci+ m, the i-th equation takes  the form 

(6.49) 

independent equations. 

Ki [a,0pfli- *+ ailP"i- 3 +  . . . + at, n- IP +KJ yi = Kiy,,,. 

The left-hand side of this degenerate equation is a product of fac tors  
which constitute the left-hand s ides  of the degenerate equations of the 
individual controlled var iables .  
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To establish stability f o r  m + O ,  i t  remains to test  the auxiliary equation 
of second kind. 

We thus come to the conclusion that if  ideal control lers  a r e  used in 
sys t ems  which remain s t ructural ly  stable a t  a rb i t r a r i l y  high gain, 
noninteraction is a dynamic property of the system; the degree of non- 
interaction inc reases  a s  the corresponding gain is increased. 
the quality of control, we see f rom (6.49) that the degenerate equation, 
which determines quality, is entirely dependent on the stabil izer pa rame te r s .  
The la t ter  can obviously be chosen so as  to ensure required quality. 

In what follows we will consider sys t ems  where noninteraction cannot 
be attained by increase of gain alone: the s t ruc tu res  should be additionally 
modified to ensu re  noninteraction. 

It is also independent of the coupling coefficients a j h .  

A s  r ega rds  

§ 6.4.  ISOCHRONOUS SYSTEMS 

Isochronous sys t ems  use an isochronous stabil izer.  This is an elast ic  
feedback element having the t r ans fe r  function 

(6.50) 

This t r a n  s f  e r function is c ha r ac  te ri s t ic of mechanic a1 i soc h ronou s 
s tabi l izers  (with negligible piston m a s s ) ,  as well a s  stabilizing t r ans fo rm?rs ,  
RC elements,  and other control elements widely used in practice.  

K c i  

FIGURE 6.9. 
chronous controller. 

The i-th control loop with an iso- 

Figure 6.9 is a block diagram of an isochronous system: the elast ic  feed- 
back loop embraces  the controller,  which is s t ructural ly  represented as a 
single aperiodic element.  Using the nomenclature of Figure 6.9,  we write 

(6.51) 
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It is c l e a r  f r o m  Figure 6.9 that the subsystem gains can be  increased 

The system as a whole is stable if the degenerate equation and the 

To explore the possibility of noninteraction, we divide all the equations 

indefinitely by increasing the corresponding control ler  gains. 

auxiliary equation each satisfy the stability conditions. 

in (6.51) by Kci.  Putting $ = m i  and assuming a l l  mi to  be of the s a m e  

o r d e r  of smallness ,  we draw up an auxiliary equation (it t u r n s  out t o  be an 
equation of the first kind in this  case) .  

After  simple manipulations, we obtain the auxiliary equation in the fo rm 

n (1 + T, i d  = 0. (6.52) 
i=1 

It always sat isf ies  the stability c r i t e r i a  and is independent of the coupling 
coefficients. 

Let us now consider the degenerate equations. Dividing (6.51) by K,i and 
1 putting m=-= 0, we obtain the following set  of degenerate equations 

K c i  

(6.53) 

Each equation in (6.53) contains t e r m s  which account for  the interaction 
of the various controlled var iables .  Noninteraction thus cannot be ensured 
by simple increase of the gain alone. 

To ensure noninteraction, the s t ructure  is modified a s  follows. The 
sum of a l l  var iables ,  with the exception of the variable corresponding to 
the par t icular  controller,  is additionally delivered to the input of the 
isochronous s tabi l izer  of each controller.  
described by the following equations. 

The system behavior is thus 

Firs t -var iable  plant equation ( see  Figure 6.9): 

(6.54) 
, = 2  

Control ler  equation 

(6.55) 
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+ Tkp) ‘ k P  f I c k  (l  + ‘kp)] ‘ k  = Kk 

This  equation descr ibes  an  independent, noninteracting process  in the 

+ ‘kp) ‘krcf + Kk‘kPfn. (6.58) 

k-th control loop. 
var iables .  

whereas  in the preceding s t ruc tures  increase  of gain ensured noninteraction 
and simultaneous rejection of external  disturbances, noninteraction in 
a sys tem representable  by equation (6.58) is not accompanied by disturbance 
rejection. 
during a detailed analysis  of noninteraction and invariance. 

This  process  i s  independent of the other  controlled 

Comparison with the resu l t s  of the previous sections shows that, 

This  important property will be investigated in what follows 

S 6.5. NONINTERACTION IN THE GENERAL CASE 

Let us consider  noninteraction in the general  case  of a system with 

We assume that each control loop i s  stabil ized 
n interacting var iables  which remains  stable as the individual gains are 
increased indefinitely. 

by a device with a t ransfer  function p,io which encloses  par t  of the 

control ler  with the self-operator  M i  

variable, Mi 
operator  of the unstabilized section, K i d c g  the gain of the unstabilized section. 

ensure  noninteraction. 
follows f rom the resu l t s  of § 6. 3, where the s tabi l izer  t ransfer  function 

is a par t icular  case  of the function * 

Fmi (P) 
(F igure  6.10). 

Let D j ( p )  be the self-operator  of the plant in respect  to the i-th controlled 
( p )  the self-operator  of the stabil ized section, Mi dcg ( p )  the self- 

It is easi ly  seen that in this  case,  as in S 6. 3, gain alone does not 
We do not prove this proposition, as i t  partly 

F m ( p )  * 
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Let a sum of disturbances 2 alkY, be additionally delivered to 
k = 1 , 2 .  ..., I ,  ..., n 

the input of each stabil izer.  The system is thus described by 

where n = 1 ,  2 ,..., n.  

(6 .59)  

FIGURE 6.10. 
the general case of a lagless plant. 

Illustrating the derivation of noninteraction in  

A s  we have already indicated, the s tabi l izer  t r ans fe r  function and the 
stabil izer connections are chosen so that the system rema ins  stable 
despite indefinite increase in gain. K,,, may therefore  be increased 
indefinitely in each subsystem. The ent i re  system will be stable if  the 
degenerate and the auxiliary equation each satisfy the corresponding 
stability c r i t e r i a  . 

we find that f o r  sufficiently sma l l  m --the system sepa ra t e s  into 

n independent equations, each describing one controlled variable only. 
The s tabi l izer  input in this  ca se  is thus the sum of all extraneous 

controlled var iables ,  which implies noninteraction for  K -+ 00. 

It is c l e a r  f rom the preceding that i f  the noninteraction conditions 
are satisfied, each subsystem can be selected and investigated independently 
with the aid of the well-known methods of the theory of single-variable 
control systems.  

by the o r d e r  of smallness  of m. 
higher the gain K,,, the more  accurate are the resul ts .  

readily chosen by the methods described in 1391 .  

Let K,,, be sufficiently large.  Dividing each equation in (6 .59 )  by Ki 
1 ,- Ki f l  

It should be emphasized that the accuracy of the r e su l t s  is conditioned 
The sma l l e r  the pa rame te r  m ,  i . e . ,  the 

In practice,  i f  a l l  the other  system pa rame te r s  are known, K i s t  is 
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The analysis  of this  section leads to tne rollowing conclusions. 
(a) Multivariable control sys t ems  which retain their  stability a t  any 

(including a rb i t r a r i l y  large) gain can be reduced to noninteracting sys t ems .  
In the general  case noninteraction is attained by increasing the correspond- 
ing gain Ki 
of disturbances f rom all the extraneous var iables  with proportionality 
coefficients miA. 

fully applicable to  the design of noninteracting multivariable sys t ems  
and to the choice of system parameters .  

and simultaneously delivering to the stabil izer input the sum 

(b) The methoaa of the theory of single-variable control sys t ems  are 

6,6. NONINTERACTION IN SYSTEMS WITH LAGS 

In our  discussion of stability of lagged systems the input variable of the 
t ime-lag element was assumed to be z e r o  during the t ime from I =  - - T  to 
t = 0. This  assumption is valid, since in l inear  sys t ems  (with which we 
a r e  concerned) stability is independent of the initial conditions. 
in the general  case,  ze ro  initial conditions a r e  inadmissible in sys t ems  
with lags. 
initial conditions. 

by introducing ideal derivatives into the systems,  and (b) high-gain stability 
is attained by introducing real derivatives.  

However, 

The system equations should therefore be written for  nonzero 

We consider the following cases:  (a) high-gain stability is attained 

FIGLIRE 6.11. Illustrating noninteraction in  the general 
case of a lagged plant. 

Let us  derive the equation of the i- th subsysterr for case  ( a ) .  

The plant equation ignoring t ime lag is 
is a block cliagrarr of this  case.  

The equation of the lag element 

v; = Y ,  ( t  - -T). 

The controller equation 

Figure 6 .11  

( 6 . 6 0 )  

( 6 . 6 1 )  

(6.62) 
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where 
~ , p " - ~ + ~ , p " - 3 +  . . . + ~ , - , p = F ( p ) ,  

and n = D + R  is the overall  o r d e r  of the differential equation describing 
p rocesses  in this subsystem. 

the plant equation 
Laplace-transforming equations (6.60), (6.61), and (6.62), w e  obtain 

the lag equation 

0 

where q i ( p ) =  Sxje-p'dt accounts fo r  the initial conditions during the t ime 

f r o m  t = - T to t= 0, 
-?  

and the controller equation 

Ri(p)~i(p)=K,iIJ',,i-J'i(p)(aop"-~+a,p"-~+ . . .  
. . .  + a n - 3 ~ + 1 ) ] + ~ n i  [P. J'i(o),  x;(o)]. (6.65) 

In (6.64) and (6.65), Dni  and R.i are contributed by the initial conditions 
fo r  Yi and Xi, respectively. 
f o r  the Laplace-transform of the controlled parameter ,  Yi(p), we find 

Solving equations (6.63), (6.64), and (6.65) 

IDi(p)Ri(p)e1P+KiKci(ao~n-2+a,pn-3+. . . +an-3p+1)IJ ' i (p)+  
+ ~ i ~ i  (P) Z a i k J ' ,  ( P ) ~ ' P =  ( K i ~ c i J ' i r e , + K i ~ ( ~ )  ( a , ~ ~ - ~ +  

. . . + I ) +  KiRsi [Py J'I (O), J'; (0) . . .]+ 
+ KjRj (P) f i  (PI + Ri (PI Dn [P, Yj (0). Y; (0) . . . I )  6''. 

Dividing the two s ides  of (6.66) by K c i  and taking KCi to be sufficiently la rge ,  
we find . 

(6.66) 

mDi ( p )  Ri ( P I  erp  + Ki ( ~ O P " - ~ +  alp" -3 + . . . + 1) J'i ( p )  + 
+ mKiR/ (PI Z aiaJ', (P) erp = (Ki Y i r ,  + mKi$ (aopn-' + 
+ ~ l p ' l - 3 +  . . . + ~ ) + m ~ i ~ n i  [ p i  (0). & ( o ) .  . .] + 

+ mKiRi (P) fi (P)  + mRi (PI Dnn [Pl J', 0, (0) . . .]) e T p .  (6 .67)  

We a s sume  F i r s t  le t  u s  consider the effect of nonzero initial conditions. 
that during the t ime f rom - t to 0 the function Y i  and i t s  derivatives have 
finite values; we moreover  a s sume  that at the t ime t= 0 the function x ( 0 )  
and i t s  derivatives a r e  a l so  finite. 
increases ,  the effect on the transient response of the initial values of Y 
and x and of their  derivatives diminishes, dropping to z e r o  in the l imit .  
However, a distinctive feature of this stabilization technique (introduction 
of ideal derivatives to the system input), as  is seen from (6.67), is that 

Equation (6.67) then shows that as K c i  



in the l imit ,  when m+O, the equation becomes lagless ,  the leading t e r m  
vanishes, and instability s e t s  in. Introduction of ideal derivatives to the 
system input is thus inadmissible for  purposes of attaining high-gain 
noninteraction. 

of ideal derivatives to the system input is equivalent to stabilizing the 
ent i re  system with a stabil izer 

This  conclusion is fair ly  obvious without a formal  proof. Introduction 

aop*-2+alpn-3+ . . . + a , - , p .  

This  system is unstable as KCi+co,  since the stabil izer embraces  the lag 
element as well. 

a r e  finite, do not affect the fundamental propert ies  of the system. 
what follows we therefore omit the par t icular  initial conditions. 

that the system rema ins  stable in the l imit  despite an indefinite increase 
in the gain of the stabilized section. 

It is significant, however, that the init ial  conditions, as long as they 
In 

Let u s  now consider the case  when the ideal derivative is so introduced 

For the i-th subsystem w e  have 

( 6 . 6 8 )  

where Ki ro, = KiKNiKi I, . 
F , i ( p )  is chosen so  as to  ensure stability with a rb i t r a r i l y  large K i s t .  

takes  the fo rm 

The o r d e r  of the highest ideal derivative entering the expression for  

We divide ( 6 . 6 8 )  by K1 I, and put Ki I, +co. The degenerate equation 

It is c l e a r  f rom (6.69) that noninteraction cannot be ensured simply 
by increasing the gain K i s t  , since the degenerate equation contains a t e r m  

x a i k Y k *  
k = l ,  2. .... 1-1. i + l ,  n 

N i  (P) F"i (P) 

and the p rocess  i s  consequently dependent on the contribution f rom a l l  the 
other controlled variables.  

Noninteraction is attained by proceeding along the s a m e  lines a s  with 
lagless  sys t ems  (6.2).  Signals of the fo rm 

(6.70) 
& = I .  2. .... n 
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are delivered to the s tabi l izer  inputs. 
subsystem is written as  

The se t  of equations fo r  the f i r s t  

I4 ( P I  N I  ( P I  QI (PI erip+ Kl DI (PI NI ( P I  Fl (PI Kl I Y, t 

Similar  expressions are obtained fo r  the o ther  subsystems:  i t  is only 
necessary  to substi tute the appropriate subscr ipt  for  1 and to omit i t  f rom 

the sum E .  
1 = 2  

Dividing (6.71) by K,,, and putting Kl II -+m, we obtain the degenerate 
e quation 

This  equation is independent of a i h x h .  

We thus conclude that introduction of an additional signal (6.70) to the 
s tabi l izer  inputs in conjunction with an increase  in the gain Ki, ,  ensu res  
noninteraction of the individual subsystems in a multivariable control 
system with lag elements .  It is of course implied that the conditions of 
infinite-gain stabil i ty a r e  satisfied.  

In conclusion let  us  consider a case  when stabil i ty a t  infinite gain Ki,, 
is ensured by r e a l  s tab i l izers  in the sys tem.  

The t ransfer  function of the s tabi l izer  in the i-th subsystem is 

Acting along the same  lines as in the preceding we readi ly  show that noa- 
interaction can be attained by indefinitely increasing the gain of the stabil ized 

section in the i-th subsystem if an additional signal x a i n Y R  is delivered 

to the s tabi l izer  input (the subscr ipt  k t akes  on all the values  except i). 
The noninteraction c r i t e r i a  of the previous sections are thus extended to  
sys t ems  with lag elements  as well. 
ensure  automatic rejection of external  dis turbances in this  ca se  ei ther .  

n 

k - 1  

Note that noninteraction does not 

§ 6.7. INVARIANCE PRINCIPLE 

In invariant control sys tems the generalized coordinate of the system, 
in  par t icular  the controlled variable, is independent of the external  
disturbances. They are therefore  a l so  called s y s t e m s w i t h  r e  j e c t i  o n  
of e x t e r n a l  d i s t u r b a n c e s .  
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In multivariable control sys t ems  the problem of invariance is substantially 
complicated by interaction between the var ious controlled var iables ,  which 
is superimposed on the external disturbances.  There is, however, a 
fundamental difference between the effect of external  dis turbances and the 
effect of coupling in the system: external disturbances do not affect the 
stability of the system as a whole, whereas  the coupling coefficients, 
or in the general  c a s e  the coupling operators ,  have a substantial  influence 
on system stability. 

To elucidate the problem of invariance,  we f i r s t  consider a th ree -  
variable system and then extend the r e su l t s  to the general  case.  

1. A three-var iable  system 

Consider a system with controlled var iables  interacting through the 
plant. 
disturbance, i f  appropriately channeled into the system, can make the 
controlled variable independent of external disturbances.  
of this rejection procedure follows, say,  f rom the Poncelet principle of 
load control,  
application to control sys t ems  operating on the Watt -Polzunov principle 
(control by deviation). 

The equation for  the controlled variable Y I  in this ca se  can be derived 

Analysis of combined control sys t ems  h a s  shown that the external  

The feasibility 

It is therefore interesting to consider this problem in 

f rom (5.22) putting 

p i r = O ,  O n i = 0  and @,,=1  ( i # R ;  i = l ,  2, 3). 

Making use of (6.73), we obtain f r o m  (5.22) 
3 3 

1 
Y,=& (-l)'+'A,,K, kl,,Y,,, , + 63 2 (-1I'"Ali IKc i d,, + Niil f i t  

k=I i = I  

where 

A3 = 

Here  

(6.73) 

(6.74) 

(6.75) 

(6.76) 

(6.77) 
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To reject  a l l  the external  disturbances,  the coefficient of fi should be 
made equal to ze ro ,  i.e., 

(-1)’” AI, [Kc +Niij = 0 for  i = 1, 2, 3. 

This  coefficient is made up of two factors :  

Ai, and [Kc )d,, + Niil = 0. (6.78) 

It is c l ea r  f rom (6.74) that the condition Consider the f i r s t  factor,  Aik .  
A i R  = 0 is equivalent to rejection of the ent i re  control system, since elimina- 
tion of the external  disturbances simultaneously eliminates a l l  the reference 
values Y r r f ~  and w e  no longer have a c o n  t r o  1 system. Fur the rmore ,  i f  
a l l  Aik a r e  zero,  the denominator vanishes and we a r r i v e  a t  the identityo-0.  

Here lies the main e r r o r  of G. V.  Shchipanov who proposed control by 
deviation fo r  the realization of the fundamentally sound idea of disturbance 
rejection that he had developed. 
obtained: a more  significant fallacy is that by rejecting the external d i s tu r -  
bance in this  way we simultaneously eliminate the reference values and thus 
destroy o u r  control system. Moreover,  in deviation control systems,  
on passing to  the l imit  Ai,= 0, we must  investigate the stabil i ty under 
a rb i t r a r i l y  sma l l  deviation from equality, i. e.,  test  the system fo r  c o a r s e -  
n e s s  in the sense  of A.A. Andronov. 

Now consider the factor  ( K c i d i i + N J .  
expressions f rom (6.77), we find 

It is not only that a z e r o  identity is 

Inserting fo r  dii and N i i  their  

o r  

( 6 . 7 9 )  

Let u s  elucidate the physical meaning of condition (6.79) .  
seen that (6 .79 )  ca l l s  for the introduction of ideal derivatives.  
K C i  is a constant positive quantity, Ri is the controller self-operator .  F m i ,  
the self-operator of the s tabi l izer ,  is thus clear ly  a constant number,  
whereas  the s tabi l izer  numerator  F,i must  be precisely equal to the 
control ler  self-operator R i ( p ) .  We conclude that in this  ca se  c o n  t r o 1 
b y  d e v i a t i o n  i n  p r i n c i p l e  c a n n o t  e n s u r e  c o m p l e t e  
( p e r f e c t )  r e j e c t i o n  of e x t e r n a l  d i s t u r b a n c e s .  Disturbance 
rejection is possible only to  an accuracy of some E ,  and the equation should 
be investigated fo r  coa r seness .  

theory and pract ice  of automatic control /14, 26, 27 ,  29 ,  51, 56 / .  
not intend to discuss  each and eve ry  of these methods; only the most  typical 
c a s e s  will be considered, with par t icular  reference to their  advantages 
and, possibly, shortcomings.  Note that condition (6.79) is not the only 
one that ensu res  invariance; moreover ,  this is not the best  policy for  
obtaining e-invariance of a control system. 

stability and provide cer ta in  dynamic propert ies .  

It is easi ly  
Indeed, 

Various techniques ensuring invariance have been proposed in the 
We do 

The point is, that a s tabi l izer  is incorporated in the system to ensu re  
If the s tabi l izer  is 

168 



___.._..._._.........._.........._........ - ... . :.-- 

chosen on the bas i s  of condition (6.79), i t  is by no means c l e a r  that i t  w i l l  
meet  the required performance character is t ics  a s  far a s  system dynamics 
is concerned. 
s i  m u 1 t a n  e o  u s l y  with the problem of stability and system performance. 

the r e su l t s  are obviouslyvalid in the general  ca se  of n controlledvariables too. 

A bet ter  solution is to tackle the problem of +variance 

We have considered the particular ca se  of a three-variable system, but 

2 .  Application of local positive feedback to ensure invariance 

We will now consider some instances of invariance ensured by local 
positive feedback. O u r  interest  in these methods s t e m s  not f r c m  their  
pract ical  significance but f rom the fact that they provide an excellent 
opportunity to warn the r eade r  against various fallacies and erroneous 
conclusions that may lead to undesirable resul ts .  

the nomenclature of Figure 6 .12 ,  we write 
Figure 6.12 is a block diagram of the system analyzed in / 2 9 / .  Using 

( 6 . 8 0 )  

alial3 (n23a32 - aZ2az3) + ha331 x = ref + - a22a3S) f (PI. ( 6.8 1) 

This is a single-variable control system, and the invariance conditions 
can be determined without considering the general  ca se  of a multivariable 
system. The par t icular  resul ts ,  a s  always, can be easily generalized to 
the case  of n controlled variables.  

L I 
FIGURE 6.12. Illustratmg the conditlons of disturbance rejection. 

We see f rom (6.81) that the controlled variable x is independent of 
external disturbances if 

uBuZ2 - aZ2au I 0. (6.82) 
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Let the pa rame te r s  be chosen so that identity (6.82) is satisfied.  It is 
readily seen that the system is noncoarse f o r  perfect invariance, whereas  
f o r  e-invariance i t  is realizable only if cer ta in  additional conditions are 
imposed. Indeed, the degree of the polynomial a11a13(a23a32 - aZ2a33) is always 
higher than the degree of the polynomial ai3aS3. 
an a rb i t r a r i l y  sma l l  departure  f rom identity gives rise to roots  which 
recede to infinity; the number of these roots  is determined by the difference 
in the deg rees  of the polynomials 

Under these conditions, 

u11u13 (a23a32 - and a13a33. 

If the new t e r m s  introduced by departure  f rom identity have a minus sign, 
the system is unstable i r respect ive of this difference. Perfect  invariance 
is thus unfeasible, since, in view of the possible appearance of t e r m s  
with negative coefficients, the system is not coa r se  in the sense of 
A. A. Andronov. 

discussed a t  all only i f  
Let us  now consider the case  of e-invariance. The question can be 

- aZ2aS > 0. (6.83) 

However, i f  (6.83) is satisfied and also 

- aZ2aS 4 E, 

the system is realizable only if the difference in the degrees  of alla13(a23a3z- a22a33) 

and a13a33 is not g r e a t e r  than two and the degenerate equation 

uI3aa = 0 (6.84) 

mee t s  the stability c r i t e r i a .  Furthermore,  the additional requirements  
described in Chapter Three  should also be satisfied,  
realizabili ty problem reduces to the design of a s t ructure  which r ema ins  
stable a t  infinite gain. 

In other words, the 

3. Inyariance via feedback 

Let u s  consider another method, which ensu res  invariance with the 
aid of internal feedback 1201 .  

Figure 6.13 is a block diagram of a control system,where invariance 
in relation to the disturbance e ( t )  is attained by introducing local feedback 
with appropriately chosen t ransfer  functions. The exact cha rac t e r  of the 
local feedback will be decided a t  a la ter  stage,  Meanwhile, taking all the 
feedbacks with the plus sign and using the nomenclature of Figure 6.13, 
we obtain the following set  of operator equations: 
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where X ( p )  is the Laplace t ransform of the controlled variable,  e ( p )  the 
t ransform of the disturbance, W,. W2, W3. Zz, and Z3 are the t r ans fe r  functions 
of the system elements  and the local feedbacks. 
according to the Watt-Polzunov principle, and so  Z,= -1. 

The system is designed 

FIGURE 6.13. 
conditions with the aid of positive feedback. 

Illustrating the derivation of disturbance rejection 

Solving equations (6.85) -( 6.89) for  the t ransform of the controlled 
variable X ( p ) ,  we find 

In o r d e r  for  the controlled variable x ( t )  to be independent of the dis tur-  
bance e ( t ) ,  the coefficient of e ( p )  in (6.90) should be equal to ze ro ,  i. e . ,  

or 

(6.92) 1 
Z3(P) = w,o. 

If the t r ans fe r  functions a r e  represented as rational-fractional functions 
of the operator  p ,  then putting 

(6.94) 

Note that a s i m i l a r  condition was derived in the preceding subsection, 
where invariance was achieved via local positive feedback. 
with the t r ans fe r  function 2, should apparently be positive in this  case,  
too; moreover ,  fo r  the real components which make up the basic  e lements  
of control sys t ems ,  the degree of the denominator Dl@) is g r e a t e r  than the 
degree of the numerator  K,@). In most  ca ses ,  Kl(p)is simply the gain, 
i .  e., a constant positive number.  

The feedback 

We thus again a r r i v e  a t  the requirement  
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of local positive feedback with ideal derivatives.  
new has been hitherto derived in addition to what we considered in S 6 . 4 .  

in the sense  of Andronov. 

In other  words,  nothing 

Let u s  now consider the stabil i ty of this system and test  i t  f o r  coa r seness  
We put f o r  the t r ans fe r  functions 

(6.95) 

The character is t ic  equation needed for  stability analysis  is obtained 
by putting the denominator in the right-hand side of (6.90) equal to zero.  
Making use  of (6.95), we write fo r  the character is t ic  equation 

o r  

It is c l e a r  that the system degenerates  whenever condition (6.94) is 
satisfied,  i. e., i f  

s ince the degree of the polynomial before  the expression in brackets  

is g r e a t e r  than the degree of the other  polynomials in (6.96).  
Let condition (6.94) be sat isf ied exactly. The degenerate equation is 

It is c l e a r  f rom (6.97)  that if the t r a n s f e r  function Zz corresponds to 
positive local feedback (i .  e. ,  the signs a r e  a l l  a s  in equation ( 6 . 9 7 ) ) ,  the 
system is unstable. This conclusion is obtained f rom the following con- 
siderations.  The f i r s t  t e r m  in (6.97) is of higher degree than the second 
t e r m .  By r e su l t s  of Chapter Three the coefficients of the leading t e r m s  
in the complete and the degenerate equation should have the same sign. 
Hence follows our  f i r s t  conclusion that the local feedback with the t r ans fe r  
function Z, is negative. The degenerate character is t ic  equation thus takes  
the form 

(6.98) UI (PI KZ ( P I  D3 (P) + K1 (PI KZ (P) K3 (P) F m 2  ( P I  0. 

The conclusion concerning the feedback rat io  Z2 h a s  been previously 

Let us  fur ther  a s sume  that the 

It is readily understood, however, that in the 

reported in 1201  and it is by no means new. 
sake of completeness and consistency. 
pa rame te r s  of the degenerate equation are so  chosen that they sat isfy 
the stabil i ty conditions. 

We give i t  he re  only fo r  the 



case  of perfect invariance the result ing sys t em is not coa r se  in Andronov's 
sense and it is thus inadequate. 

infinitesimally sma l l  quantity. 
obviously may be ei ther  positive or negative. 
generates  a t  l ea s t  one right-half-plane root.  
invariance we thus end up with a noncoarse,  i. e., unrealizable,  system. 

Indeed, suppose that the system departs  f rom condition (6 .94)  by an 
This gives rise to a sma l l  pa rame te r  which 

A negative pa rame te r  
In the case  of perfect  

It now rema ins  to consider invariance in the case  

The character is t ic  equation is 

( 6 . 9 9 )  

(6.100) 

where 

FNZ (P) = D, (P) D, (P) D, ( P )  Fm2 (PI- 
F N I  (PI = KI (P) K2 (P) D, (PI + KI (P) K2 (P) K3 ( P ) F ~ ,  (P). 

This  system is realizable i f  i t  is s t ructural ly  stable a t  infinite gain. 
In other words,  we have proved that perfect  invariance is unattainable in 
this way, while e-invariance can be achieved only i f  the s t ruc tu re  of the 
system has  infinite-gain stability and the necessa ry  and sufficient conditions 
of Chapter Three a r e  satisfied. 

We will not go into the corresponding r e su l t s  for  multivariable control 
sys t ems ,  since this  would involve repetition of o u r  previous discussion 
( see  Chapter Three) of sys t ems  with infinite-gain stability. In conclusion 
of this section we will consider the propert ies  of multivariable control 
sys t ems  based on the Watt -Polzunov principle, with the controlled 
var iables  interacting through the plant. It will be c l e a r  f rom what follows, 
however, that the nature of coupling is in general  dependent not only on the 
propert ies  of the plant but a lso on the s t ructure  of the control system itself .  

control sys t ems  into a number of s t ructural  groups according to the 
following signs: 

To establish the dependence of coupling on s t ructure ,  we divide the 

(a)  
(b) 

sys t ems  made up of one-loop single-variable subsystems; 
sys t ems  made up of one-loop single-variable subsystems with 

derivatives of f rom ( n  -2)-th to the f i r s t  o r d e r  inclusive delivered to the 
input (the system can be made stable when the subsystem gains inc rease  
indefinitely) ; 

(c) sys t ems  made up of multiloop single-variable subsystems.  
Let u s  consider each of these groups separately.  
(a) Figure 6.14  is a block diagram of the control loop fo r  the i-th 

variable.  This s t ructure  is described by the following operator  equation: 

P i  (P)4 i (P)+KiK . i IY ,+Ki4 i (P)~ ,a i ,Y ,  =KiK&,i+KiRi ( ~ ) f i ,  ( 6 . 1 0 1 )  

where D i ( p )  and Ki  are the self-operator and the gain of the plant in r e spec t  
to the i-th variable; & ( p )  and K C i  ditto fo r  the controller;  a i k  the coefficient 
of coupling between the i-th and the k-th variables,  determined by plant 
properties;  Y i r C f  the reference value of the i-th controlled variable;  f r  the 
load in the i-th loop. 
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We see f r o m  (6.101) that the coupling between the individual controlled 
var iables  depends not only on the propert ies  of the plant (the coefficients 
aik and Ki), but a l so  on the fundamental propert ies  of the controller.  F o r  
the sake of convenience, we divide (6.101) through by K C i :  

The degree of coupling inc reases  as Ki is increased and dec reases  as 
the control ler  gain Kci  increases;  moreover ,  the dynamics of coupling 

depends on R i ( p ) .  
that the interrelationship between the 

lyci NI controlled var iables  can be made a rb i t r a -  
-I9i (PI o,lp/ r i l y  sma l l  by appropriately increasing the $ 7 7  that the system rema ins  stable in the 

FIGURE 6.14. Disturbance rejection con- should have a finite value, which de te r -  
ditions for K, +co . 

(b) To permit  increasing the gains K,i 
indefinitely without l o s s  of the stability, derivatives of all o r d e r s  f rom 
( n  -2)-th to f i r s t  inclusive (where n is the degree of the operator  D i ( p ) R , ( p )  ) 
a r e  delivered to the system input. The equation for  the i-th controlled 
variable then has  the fo rm 

We also see f r o m  (6.102) 

controller gain K c i ,  provided, of course,  

process .  
being considered Di(p)Ri(p) is of higher 
than second degree,  the cr i t ical  gain Kci c r  

mines the lower bound of coupling. 

Z aix fpl V, If in the c l a s s  of s t ruc tu res  
f f + i  

Dividing (6.103) through by K c i ,  we find 

In t e r m s  of coupling this  ca se  is not different from that under ( a ) .  It is 
significant, however, that the gain KCi may increase indefinitely without 
incurring the danger of instability. 
be made as sma l l  a s  desired.  

rejection of the external  disturbances f i .  

is a block diagram of the multi-loop configuration fo r  the i-th controlled 
variable.  The corresponding equation is 

The degree of coupling can therefore  

In the two s t ruc tu res  above decoupling is attained simultaneously with 

(c) Finally we consider the case of multi-loop subsystems.  Figure 6.15 

(6.104) 
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where K, 
subsystem: Di(p)  is the plant self-operator,  Q i ( p )  the self-operator of the 
stabilized section, N i ( p )  the self-operator of the unstabilized section; Fni(p) 
and F m i ( p )  a r e  respectively the numerator  and the denominator ope ra to r s  
of the s tabi l izer  ratio; K,$, is the gain of the stabilized section, Ki the plant 
gain, K N i  the gain of the unstabilized section. 

=K,KN,Kl I~ and the following nomenclature is adopted for  the i-th 

FIGURE 6.15. 
in a more complex case. 

Illustrating the disturbance rejection Conditions 

To simplify fur ther  analysis,  we write (6.104) in the form 

1 ([r Q,(p)Fm,(p)+F, , (p)]Ni  ( P ) D ,  (PI + K N i K i F m i  ( p ) } Y , +  

+ ~ Q ~ ( P ) N , ( ~ ) F , ~ ( ~ ) ~ ~ , , Y , +  

+ KFn, (PI Ni  (P )  aid', = KiKNiFmi ( p )  Y, 
f#k 

+ IQi (PI F,, (PI+ K, F,, (AI N i  ( p )  f l .  ( 6 . 1 0 5 )  

We see f rom (6.105) that the dependence of coupling on s t ructure  in this 
general  ca se  is determined by the two components of equation (6.105) which 
contain the s u m s  x a l , Y k .  In the f i r s t  component the coupling coefficient 
is directly proportional to the plant gain fo r  the i-th controlled variable,  
dependent on the controller self-operator and the denominator operator  
of the s tabi l izer  ratio,  and inversely proportional to the gain of the 
unstabilized section. 

plant gain and dependent on the self-operator of the unstabilized pa r t  of 
the controller and on the numerator  operator  of the s tabi l izer  ratio.  

reduced to a minimum by increasing the gain pa rame te r  Ki  (,. The second 
component has  noticeable influence on the dynamics of the process ,  since 
under steady-state conditions Fni(p)p=O= 0. 

derivatives embracing only a pa r t  of the control circuit .  
equation can be derived from (6.105) by putting F m i ( p )  = 1. 

not interrelated,  the coupling of the controlled variables is highly sensit ive 
to the s t ructure  of the single-variable subsystems. 
can be rejected only by increasing the overal l  gain. 

In the second component the coupling coefficient is proportional to the 

In sys t ems  with infinite-gain stability, the f i r s t  component can be 

A s imi l a r  pattern is obtained when stabilization is achieved by ideal 
The corresponding 

We have thus established that,  although the individual control lers  are 

External disturbances 
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6.8. NONINTERACTION AND INVARIANCE IN THE 
GENERAL CASE O F  A MULTIVARIABLE COMBINED- 
CONTROL SYSTEM 

In this  section we proceed with a discussion of multivariable control 
sys t ems  with the var iables  interconnected through the plant and through 
the load. 
sys t ems  of this  kind does not necessar i ly  implynoninteraction, and vice ve r sa :  
noninteraction does not automatically ensure invariance. We will now con- 
s ide r  some methods that ensure noninteraction and invariance simultaneously. 

In previous sections we have established that invariance in 

FIGURE 6.16. 
action and invariance. 

Illustrating simultaneous derivation of noninter- 

We have seen that invariance to an accuracy of E is achieved in s t ruc tu res  
with infinite-gain stability by applying an additional disturbance signal to 
the general  stabil izer input. We have also seen that noninteraction fo r  
s t ruc tu res  of this  kind is attained by additionally delivering to the general  
s tabi l izer  input the sum of a l l  extraneous controlled var iables ,  each 
multiplied by the respective coefficient a i a ( p ) .  

invariance.  
on the sy,stem structure  and pa rame te r s  in this case.  

combined-control system. 
extraneous controlled var iables  is delivered to the stabil izer input. 

K .  element with the t r ans fe r  function L a d d i t i o n a l l y  receives  the s u m  of a l l  
Ri ( p )  

the external disturbances (through a transducer).  
logical outgrowth of the configurations considered in the previous chapter.  
A s  before, we a s sume  that the system is s t ructural ly  stable a t  infinite gain. 

equation f o r  the case  on hand: 

Let u s  now consider how to simultaneously achieve noninteraction and 
We will establish the additional res t r ic t ions to be imposed 

Figure 6.16 is a block diagram of the i-th subsystem in a multivariable 
We s e e  f rom Figure 6.16 that the sum of the 

The 

This  s t ructure  is a 

Without repeating the elementary manipulations, we write the ma t r ix  

Y j  = A-' ( p )  (BY,,, + LF]. (6.106) 

176 



Inserting for the ma t r i ces  the i r  explicit expressions and multiplying 
we find 

For the j- th controlled variable we have 

Here  

(6.109) 

Let u s  f i r s t  consider invariance of the controlled variable Y i  under 
the disturbances.  Invariance is ensured i f  

Inserting for Ckh, P h k ,  and dhktheir expressions f rom (6.109), we write 

or  

Since by assumption the s t ruc ture  is stable fo r  K c +  00, the conditions 
of e-invariance for sufficiently high K ,  are still written in the same form 
as in Chapter  Five: 

( 6 . 1 1 2 )  

Now consider the noninteraction conditions. Noninteraction of the j-th 
controlled variable is ensured, i .  e., the controlled variable Y, is made 
independent of all Yk. k =  1,. . . , n, k $. j ,  in  both the steady-state and the 
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t ransient  modes of operation i f  the determinant A in (6.108) is independent 
of the coupling coefficients a i h ;  an additional requirement  is that the right-  
hand side of the equation should contain t e r m s  with Y,f j  only, while t e r m s  
with Yrcfk,  k =  1, 2 , .  ... n. k # j ,  all vanish. 

n 1 The product K C l  can be taken outside the determinant A .  Putting - = m i ,  A Kc I 

b , ,  0 ... 0 ... 0 
0 bz2 ... 0 ... 0 

A =  0 ... bj j  ... 0 . . . . . . . . . . . .  
0 ... ... ban 

we write 

. 

(6.113) 

If the necessa ry  and sufficient conditions of stability 1391 a r e  satisfied,  
the determinant (6.113) fo r  sufficiently large K c i  (mi+O) degenerates  to 

(6.114) 

n 

If for  the time being we ignore the factor K c i ,  the left-hand side of (6.108) H 
sepa ra t e s  into n f ac to r s  and the determinant is independent of the coupling 
coefficients a ik .  

satisfied,  it h a s  the f o r m  
Consider the right-hand side of (6.108). If the invariance conditions a r e  

(6.115) 

Let u s  derive explicit expressions fo r  Aaj in the case  K,, 403. The 
t ranspose h a s  the fo rm 

II all + Kc I ~ I I  dzzazl d j ~ a j l  d""an1 + K , h  d j z a j 2  dn"a"1 . . . . . . . . . . . . . . . . . . . . . . . . . . .  
dzzazj aJJ + K C  i b l j  dncanj 11 (6.116) 

. . . . . . . . . . . . . . . . . .  ll d,,b,, . ' 'd,*U,, dnnajn ann + Kcnbnn I/ 
For the j-th controlled variable Y j  the elements  of the j-th row in the 

Now the cofactors have the following obvious propert ies :  
(a) In the nonsingular ca se  the rank of the cofactor is one less than 

the r ank  of the system determinant.  
(b) In each cofactor A k j  ( k  # j )  there  is a t  least  one row which contains 

no elements  with K c , ,  and it is only in Ajj that each row contains an element 
with K C I .  

we write fo r  the j-th controlled variable 

t ranspose are replaced by their  cofactors,  which are the A k j .  

Making use of these propert ies  of cofactors  and employingequation (6.113), 
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where 

Here  l rn l  is a determinant with all the elements  of a t  least  one row 
multiplied by m ;  dots in the numerator  in the explicitly written determinant 
[E( indicate that e lements  multiplied by ( m (  are to follow. It is a l so  clear 

f rom (6.117) that all the t e r m s  contain a common factor n K C 1 .  
n 

Dividing 
1=1 

the numerator  and the denominator by K,, and passing to  the l imit  as 

m + 0 ,  w e  find 

Ill 

Y,=- 

b l 1 0  0 .  . . . . .  ... 0 
0 b , , O  . . . . . .  ... 0 . . . . . . . . . . . . . . . . . . .  
0 . . . . . . . . .  b j - 1 , j - l  ... 0 
0 . . . . . . . . . . . .  b j + l , j + 1  0 . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . .  ... ( 6 . 1 1 8 )  0 b,, I I j/Y,d I 
0 ... 0 Kc,,=- bJ1 ' ... . . . . .  I ...... b",, 

We have thus obtained noninieraction of the j-th controlled variable to 
an accuracy of e. 
in Figure 6.16 is stable a t  infinite gain and the necessa ry  and sufficient 
conditions of stability a r e  satisfied, this s t ructure  can be made to ensu re  
simultaneous noninteraction and invariance a t  sufficiently high gain. 

Hence readily follows the conclusion that i f  the s t ruc tu re  
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Chapter  Seven  

SYNTHESIS OF F E E D - S T R U C T U R E  SYSTEMS WITH 
P R O P E R  TIES E Q V I V A  L E N T  T 0 ADAPTIVE S YS  TEMS 

5 7.1.  INTRODUCTION 

Adaptive (self-adjusting) sys t ems  are used when the control system is 
expected to a l t e r  i t s  propert ies  in accordance with the propert ies  of the 
controlled object. 

of plant pa rame te r s  may be  due to  external disturbances which cannot be 
programmed beforehand or to some  change in the operating conditions of 
the plant. The s t ruc tu re  and the pa rame te r s  of the control system, though 
quite adequate for  the initial s ta te  of the plant, may prove to be inadequate 
under the new conditions. 

extremum in relation to a cer ta in  quality cr i ter ion.  
solved in the design of control sys t ems  for  these objects is how to find 
the extremum and how to hold i t  by on-line variation of system pa rame te r s ,  
so  that, i r respect ive of external disturbances,  the plant always r ema ins  
on the optimum frequency response (optimum operating conditions). 
control system is provided with an appropriat t  searching circuit ,  which 
is generally a fair ly  complex device. Searching Lontrol sys t ems  a r e  a lso 
used when no information is available on the plant propert ies  o r  when only 
par t ia l  information is a t  hand. 

In any case  the system should have the property of adaptation or self-  
adjustment. 
system pa rame te r s  is insufficient, and adaptation is attained by actually 
changing the s t ruc tu re  of the system. 

Systems with a self -improving program a r e  somewhat different f rom 
adaptive sys t ems .  Here,  the ordinary feedback logic is insufficient fo r  
effective control. The character is t ic  features  of this ca se  a r e  best  i l lus-  
t ra ted by the following example. 

example of a multivariable controlled object. 
control system was to ensu re  constant thickness of the rolled sheet.  
sheet thickness is a function of many variables.  
the deviation f rom a given gage can be expressed as 

This  situation may a r i s e  in the following typical ca ses :  
(a) The plant pa rame te r s  change in the p rocess  of control. The variation 

(b) The re  is an extensive c l a s s  of controlled objects whose output has  an 
The problem to be 

The 

Sometimes simple adjustment of the numerical  values of some 

In Chapter One we considered the continuous hot-rolling mil l  as  a typical 
The principal aim of the 

In the general  case, 
The 

a = F ( h i ,  T, ni, t ,  6, ~ ~ 1 ,  (7.1) 



where hi are the rol l  coordinates, T is the rolling temperature,  ni. ni+l are 
the rolling speeds in the i-th and the ( i  + 1) -th stands, t i  is the time lag, 
6 is a random variable,  depending on the condition of the mill,  uniformity 
of the metal ,  and other random factors .  

The problem is to choose the var iables  entering the function F s o  a s  to 
minimize the gage deviation a (ideally i t  should be zero) and to maintain 
i t  between permissible  l imits.  

It is c l e a r  that (7.1) is a functional and we have here  a variational 
problem. 
in multivariable control. Indeed, the sheet thickness can be al tered by 
changing the ro l l  gap o r  by adjusting the s t r i p  tension. 
of gage control, however, are not independent. 
of rolling and f rom numerous experiments that the variation of rol l  gap 
effectively a l t e r s  the s t r i p  thickness only if  the interstand tension r ema ins  
constant. If now the rol l  gap is adjusted without controlling the rolling 
tension, the thickness will change insignificantly and there  is moreover  
the danger of looping on the reduction end of the stand and stretching (o r  
even rupture) of the s t r ip  on the other end. 
avoided a t  a l l  costs ,  so  that the rol l  gaps and the rolling speeds are 
controlled simultaneously. 

positioned by a special  regulator in each stand; the roll  speeds a r e  adjusted 
by controlling the main dr ives  of each stand. The different control sys t ems  
a r e  interconnected through the s t r ip .  
character is t ic  feature which requires  a special  approach to the design of the 
system. The s t r i p  thickness can be directly measured only a f t e r  the l a s t  
stand; transportation lag makes i t  impossible to act  on the s t r ip  section 
that is being measured at  the given t ime. This is the main reason why an 
ordinary deviation-control system will not do in hot-rolling mills.  a!c However, 
the distribution of thickness variability along the s t r ip  is near ly  the same  
fo r  the i-th and the ( i + l ) - t h  s t r ip ,  while for  nonconsecutive s t r i p s  this 
distribution may be essentially different. This  hypothesis is borne out by 
a wealth of s ta t is t ical  data and constitutes the bas i s  of what is known as 
sys t ems  with self-improving program. 

In these systems,  the rolling program for  the i-th s t r ip  i s  developed 
f rom the measurement  data fo r  a l l  the previous i-1 s t r ips .  
control p rocesses  a r e  of independent interest ;  h e r e  they a r e  discussed only 
as another example of adaptive systems.  

propert ies  change due to external o r  internal disturbances and when 
incomplete information is available on the controlled object. 
sable component of such adaptive sys t ems  (with the exception of the l a s t  
one considered in this  section) is a searching circuit ,  and adaptation is 
achieved by an adjustment of the system pa rame te r s  or even modification 
of the system structure  to meet a certain quality cri terion. 
question to be considered in this context is the synthesis of self-adjusting 
sys t ems  which adapt without requiring a change in s t ructure .  
following we shall  see that such fixed self-adjusting s t ruc tu res  can be 
designed fo r  a sufficiently large c l a s s  of controlled objects. 
of this  chapter is thus fixed-structure sys t ems  which have the same 
propert ies  as adaptive systems.  

It is a l so  fair ly  obvious that we a r e  dealing with a problem 

These two methods 
We know from the theory 

This  development must be 

The rol l  gap is controlled through the pressing screws,  which a r e  

Hot-rolling gage control has  another 

Rolling-mill 

We see  that adaptation o r  self-adjustment is required when the plant 

An indispen- 

An interesting 

In the 

The subject 

Deviation control can  be instituted by regulating some indirect parameter, e.g.. the roll pressure. 
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7.2. STRUCTURAL NOISE REJECTION IN A 
CERTAIN CLASS O F  DYNAMIC SYSTEMS 

As we have previously noted, one of the reasons  for the variation in 
plant propert ies  is the presence of external  disturbances. 
problem of modern automatic control theory and pract ice  is the choice 
of s t ruc tures  and parameters  which a r e  a s  noiseproof a s  possible. 

Considerable attention is devoted in the l i t e ra ture  to the problem of 
noise suppression (see,  e.g., / 6 6 / ) .  
of a noisy input, when the a im is to isolate the effective signal against 
the background of noise. 

effective signal or  the reference pulse a r e  without noise. 
in severa l  points along the control channel. This  noise is contributed by 
various loads and disturbances, which may be of a random nature .  
section we deal with the case  of random noise and show how to choose the 
s t ruc ture  and the parameters  of a control system so a s  to minimize the 
interference.  In the beginning we consider a single-variable system, and 
then generalize the resu l t s  to multivariable control sys tems.  

A highly topical 

The case  considered in / 6 6 /  is that 

In automatic control sys tems and in a number of se rvosys tems the 
Noise is injected 

In this 

1. Single-variable control system 

Figure 7.1 is a block diagram of an automatic control system. The 

It is assumed that Yref is noisefree. 
reference signal Yrer i s  delivered to the input and the system is expected 
to reproduce this signal faithfully. 

I -~ ~~- ~ 

FIGUKE 7.1. The general case of an N-element system. 

The system consis ts  of N elements  with t ransfer  functions KrRI(P) Of 

these N elements ,  a+m elements in different pa r t s  of the closed loop a r e  
noisy. For the sake of simplicity, let  a noisy elements be concentrated 
in one par t  of the loop, and the other  m elements  in some other  par t ,  so  
that j3 noisefree elements  separate  between the two groups a and m .  This  
par t icular  setup is adopted in o rde r  to simplify the mathematical  manipula- 
tions. 
an a rb i t r a ry  distribution of noisy elements  in the control loop. 
only one condition imposed on the position of the elements .  
input o r  origin is the point where the reference signal is delivered (we 
have already remarked that the re ference  signal is noisefree) ,  then the 
f i r s t  v elements  a f te r  the input (where Y is any nonzero integer) a r e  without 

Di(P) . 

The conclusions, however, a r e  quite general  and can be applied for  
There is 

If the system 
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noise. 
the t r ans fe r  function between the point of noise injection and the output of 
the element is regarded as being different f rom the t r ans fe r  function of 

Since noise is not necessar i ly  injected a t  the input of each element,  

the element (we denote i t  by S). 
There is only one restr ic t ion imposed on noise: the noise and a l l  i t s  

t ime derivatives have a finite absolute value, i. e., 

I f \ k ) I < M  ( i = l ,  2, ..., n; k = O ,  1, ..., m). (7.2) 

Otherwise,  the noise may be represented by any, in par t icular  random, 
function of t ime. 

We now prove some propert ies  of this c l a s s  of s t ructures ,  which a r e  
jointly r e f e r r e d  to as "st ructural  noise rejection". 

The accuracy of reproduction of the input reference signal Y,e, i nc reases  
as the gain of the noisefree elements  increases .  
the gain of the elements  immediately preceding the noisy components of 
the dynamic chain. 

To prove this  proposition, we have to find the t ransfer  function of the 
system shown in Figure 7.1. 

F o r  the noisefree elements we may write 

Noise is suppressed by 

For the noisy elements,  

After some calculations, we obtain the following 
output of the loop shown in Figure 7.1: 

(7.3) 

(7.4) 

expression for  the 

Let  the gain of the noisefree elements he sufficiently high. Then 
1 dividing (7.5) through by 0 Ki fi K, and putting - = 1. =m, we obtain 

a f t e r  simple manipulations 
s l  /=v+a+i  KI K /  
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F r o m  (7 .6) ,  clearly,  

(7.7) 

i f  this l imit  exis ts ,  i .e . ,  i f  the system is realizable (stable) / 3 9 / .  
have thus proved the following: 

by increasing the gain of the noisefree elements;  

We 

(1) for  the c l a s s  of s t ruc tu res  being considered noise can be suppressed 

(2 )  noise suppression improves for  noisy elements  far f rom the input. 
The general  equation of the output variable for  s t ruc tu res  of this c l a s s  

can be writ ten a s  

(7.8) 

form-,  0 

Such a system is realizable i f  and only i f  i t  r ema ins  stable for  m-+O, 
i. e., f o r  K i + m .  
an indefinite i nc rease  in the gain of the noisefree elements,  the reference 
signal can be reproduced with infinitely high accuracy. The s t ruc tu ra l  
aspect  of this  proposition is that noise is suppressed by the gain of the 
elements  which a r e  situated between the input of the control system and the 
noisy element. 

In other words, i f  the system retains  i t s  stabil i ty despite 

2 .  Multivariable control sys t ems  

Figure 7.2 is a block diagram of the i-th control loop. 
another element of the circui t  a r e  noisy. 
and not N elements  obviously does not affect the generali ty.  

The plant and 
That the loop includes only four 
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The relevant equations in Laplace t r ans fo rms  are 

Solving equations (7.9) -(7.12) fo r  Y i ,  we find 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

l im Yi  = Y,,,,. (7.15) 
m+O 

W e  have obtained the same result  and the same  s t ruc tura l  property. 
Thus, the disturbance f l i  i s  close to the input and only the gain of the f i r s t  
element is available for i t s  suppression. 
f r o m  the input to he  suppressed by the gains K l i  and I(3ir etc.  

The disturbance f z i  is far enough 

I 
FIGURE 7.2. Illustrating structural noise rejection. 
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Structural  noise  rejection is thus a property that can be readily extended 
to multivariable control systems.  
obviously connected with considerations of infinite -gain stability. 

Here again system realizabili ty is 

7.3. PHYSICAL REALIZABILITY O F  SYSTEMS 
WITH STRUCTURAL NOISE REJECTION 

F i r s t  let  u s  consider the realizability of noiseproof s t ruc tu res  in 
application to single-variable sys t ems  (Figure 7.3). 
are the second and the fourth. 
manipulated as required.  

The noisy elements  
The gain of the noisefree elements  can be 

FIGURE 1.3. Noise rejection in  a more general case. 

A s t ructure  is said to be realizable if i t  r ema ins  stable a t  infinite gain 
and i f  the noise can be suppressed by increasing the gain. Xc It will be seen 
f r o m  the following that noise rejection is possible only if  the high-gain 
element is unstabilized, so that the questions of stability and realizabili ty 
should be considered separately in this  case.  

After appropriate calculations, we obtain for  the output variable of the 
s t ructure  shown in Figure 7.3 

R ,  (P) 0; (P) 0; (P) KlKzK3K,Y,,, 
YO”, = , + A Di (P) 0; (P) D; (P) + 0; (P) 0; (P) Ri (P) K1KZK3K4 

(7.16) 

System stability depends on the position of the poles of the right-hand 
side of (7.16) or, equivalently, on the z e r o s  of the character is t ic  equation 

IpT DI(P)D;(P)D;(P)+D;(P)D;(~)~R, (P)KIK&~KI=O.  (7.17) 
4 I 

A more rigorous discussion of realizability, taking account of system coarseness requirements, is given 
in a special section in what follows. 
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Dividing (7.17) through by K& and putting 

1 1  -=-- K, ua -In* 

we write 

The system is realizable if and only i f  the roots  of (7.18) are in the left- 
half plane f o r  m+O. 
is necessa ry  and sufficient that the roots  of each factor in (7.18) are in the 
left-half plane for  m-t  0. 
the roots  that they generate depend on the self-operator of the noisy 
elements.  We a s sume  that the elements  are intrinsically stable, and 
D;(p)D;(p)= 0 therefore has  left-half-plane roots.  The stability of t he  
system a s  a whole therefore depends on the roots  of the second factor 

Now, w e  see f rom (1.18) that fo r  this to hold t rue it 

Since the roots  of & ( p )  D;(p)  are independent of m, 

fo r  m-20. 
The r e su l t s  of Chapter Three  suggest the following procedure for  the 

determination of the stability conditions. 

Let N2 be the degree of the polynomial D , ( p )  and N, the degree of the 
4 

4 

I=1 
polynomial n R, ( p ) ;  the system is stable if  

(1) N2-", ,<2;  

(2) K2K4 f i l & ( p )  = 0 sat isf ies  the stability conditions; 

( 3 )  cer tain relationships a r e  observed between the coefficients of the 
= I  

4 4 

polynomials IT Di ( p )  and K , K 4 , q  R1 ( p )  depending on which of the two following 

equalities is t rue:  
I = I  

or 

Let u s  consider the most  difficult c a s e s  a s  far as realizability is 

Suppose that the elements  shown in Figure 7.3 a r e  made up of aperiodic 
concerned. 

components. 
equation (7.19) takes the fo rm 

If out of the total of N components, v are high-gain devices, 
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( 7 . 2 0 )  

Equation ( 7 . 2 0 )  clear ly  satisfies the stability conditions fo r  m+O only 
This is a t r ivial  ca se  of very l imited interest .  

Let u s  consider stabilization of the system for  N2>2. 
System ( 7 . 2 0 )  is stabilized fo r  m-tOby feeding into i t  derivatives a t  

least  f rom the ( N  -2)-th to the f i r s t  o rde r .  
of the system by introducing additional N - 2  amplif iers  (the gains of these 
amplif iers  can be made sufficiently high). Each of these amplif iers  is 

enclosed in a negative feedback loop with a t r ans fe r  function I$-TIP 
(Figure 7 . 4 ) .  A s  rega rds  the remaining par t  of the circuit ,  we a s sume  
that v out of the N aperiodic components a r e  noisefree,  and that their  
gain can be varied between wide l imits.  

if N < 2 .  

We now modify the s t ructure  

Mi 

FIGURE 1.4. Structure ensuring stability and noise rejection. 

F o r  the sake of simplicity the noisy elements a r e  collected in two groups, 

F o r  the f i r s t  N - 2  feedback-controlled amplif iers  w e  have 
which a r e  located a s  shown in Figure 7 .4 .  

N - 2  

X N - 2 = n  T i p + l f l l i K i h  Kih( l+Tip)  ( h - Y o u t ) ~  ( 7 . 2 1 )  

X 1- -2 D, @) X N - 2 7  ( 7 . 2 2 )  

X,=- K2 K; ( 7 . 2 3 )  

X -K, ( 7 . 2 4 )  

y =- K4 ( 7 . 2 5 )  

i = l  

D*(P) D; (P) 

a -  D,(p)  X2' 

D, (P) X 3 +  - 0°C 

Eliminating X , ,  X,, X,, XN-* between ( 7 . 2 1 )  - ( 7 . 2 5 ) ,  we find 
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N- 2 

1=1 
The left-  and the right-hand side of (7.26) are divided by a K i h K & z .  

Assuming that K I ~ ,  Kl and K3 are of the same o r d e r  of magnitude, we put 

_=--_- I ' ' - m  and af ter  e lementary manipulations we obtained f rom (7.26) 
Khf K1 - K 3  

+ " - 3 p ~  j = l  K ( l + ~ , p ) +  - ... + p N - l ] X  
igJ 

4 N - 2  

- 1  - 
x p D i  ( p )  D; (P) f 2 - t  KZK4 (I + (P) q e f *  (7.27) 

Here  X indicates that the f i r s t  sum i s  taken over  the combinations of the 
products of a l l  the subscr ipts ,  except j =  1, thenext s u m i s  takenfor  j # 2 ,  etc. 

affect the noise, neither enhancing nor suppressing it.  
f rom the feedback amplif iers  i s  that they a l t e r  the noise amplitude by a 
factor of MN-2. If M<1,  the noise is appropriately amplified. As  in the 
previous examples,  the noises  a r e  suppressed by the gain of the noisefree 
elements  without feedback. 
effectively eliminated. 

to zero,  gives the character is t ic  equation that determines the stability 
(realizabili ty) of the system. Thus, 

We s e e  f rom (7.27) that the gain of the feedback amplif iers  does not 
The only contribution 

If their  gain is sufficiently high, noise is 

Let us  now consider the left-hand side of (7.27) which, when made equal 

(7.28) 
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The degrees  of any two adjoining polynomials in (7.28), with the exception 
of the las t  pair ,  differ by 1, and the difference in the degrees  of the l a s t  

two polynomials is 2 ,  since the degree of the polynomial n D , ( p )  is by 

assumption N (we are dealing with aperiodic components). 

satisfied. 

4 

Is1 

The s t ruc tu ra l  stabil i ty c r i t e r i a  formulated in Chapter  Three are thus 
The degenerate equation in this  case is 

(7.29) 

It always sat isf ies  the stability conditions. In o r d e r  fo r  the sys t em to be 
stable (realizable) i t  is clear ly  necessa ry  and sufficient that the auxiliary 
equation of third kind sat isf ies  the stability conditions. 
equation can be made to satisfy the stability conditions by an appropriate 
choice of the t ime constants TI,  the feedbacks, and the gain f ac to r s  piand K2K4.  

In this 
ca se  we have incorporated in the sys t em N - 2  high-gain amplif iers .  
If N -1 amplif iers  a r e  introduced, we obtain an auxiliary equation of 
the f i r s t  kind, which in our part icular  case always sat isf ies  the stabil i ty 
conditions, as i t  can be reduced to the fo rm 

The auxiliary 

We have thus proved the realizabili ty of these s t ruc tu res .  

( 7 . 3 0 )  

The number of amplif iers  in the system can be reduced to N / 2 .  The 
corresponding auxiliary equation is of the second kind (see Chapter  Three),  
and the feedback pa rame te r s  (second-order  feedback loops a r e  used in 
this case) should be so chosen that the auxiliary equation sat isf ies  the 
stability conditions. 

§ 7.4 .  REALIZABILITY O F  NOISEPROOF STRUCTURES 
IN MULTIVARIABLE CONTROL SYSTEMS 

The r e su l t s  of the preceding section suggest a convenient approach 
to realizabili ty fo r  multivariable control systems.  It is of cour se  c l ea r  
that the noise-rejecting gains should not be stabilized. The s t ruc tu re  of 
the system in Figure 7.2 should therefore  be so modified that the system 
becomes realizable and the high-gain elements  K I  and K3 a r e  left unstabilized. 
Figure 7.5 is a block diagram of an i-th subsystem which m e e t s  these 
requirements .  

FIGURE 7.5. Illustrating realizability conditions. 
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I 

Making u s e  of the nomenclature of Figure 7 . 5 ,  we obtain a se t  of 
equations describing the behavior of this system: 

whence 

o r  

( 7 . 3 1 )  

( 7 . 3 2 )  

and s imilar ly  

Eliminating X,, Xz, XJ, XI. X5 and X e  between (7 .33)  - ( 7 . 3 9 ) ,  w e  obtain a f te r  
e lementary manipulations the following equation for  the i-th controlled 
variable : 

[ fi D l  k (P) fi (F l  k ( p )  + p i n K .  1 k)+ 6 Kik fi K c  1R 1”I F l  k ( p ) ]  ‘ 1  + 
k = l  k =  k = l  k s I  

Putting i =  1,. . . , n, we obtain a complete se t  of equations describing 

Suppose that the gains K,, of the feedback amplif iers  and the gains K, ,  
this multivariable system. 

and K,, can be made sufficiently large (theoretically infinite). F o r  the 
sake of simplicity w e  assume that the gain fac tors  a r e  all of the same 
o rde r  of magnitude. Putting 

1 1 1  
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3 

= I  
and dividing (7.40) through by ~ K C k K l U 3 ,  we obtain a.fter simple manipulations 

( 7 . 4 1 )  

F r o m  ( 7 . 4 1 ) ,  fo r  m-0,  

l im Y i = Y r e r i  ( i =  1, 2, . . ., n). 
f f l+O 

The realizability of this configuration is determined by the stability 
of the multivariable control system a s  a whole. 
( s ee  Chapter Three)  that a general  multivariable system with infinite- 
gain stability can be obtained i f  each single-variable subsystem is stable 
a t  infinite gain; hence, to obtain the necessa ry  realizability conditions, i t  
is sufficient that the roots of the equation 

We have shown previously 

remain stable f o r  m+O. W e  write equation ( 7 . 4 2 )  in expanded fo rm:  

The sma l l  parameter  in b r a c e s  appears  in o r d e r  of descending powers; 
the polynomials multiplying the small  pa rame te r  a r e  likewise in a descend- 
ing o rde r ,  and all this  corresponds to s t ructural  stability for  n 1 4 0 .  It 
only r ema ins  to consider the polynomial 

4 

m2PiIP i2Pi3  H D i k  ( p )  f Kt2Ki4Fil (p )  FiZ (p)Fi3 ( p )  = 0. ( 7 . 4 4 )  

Equation ( 7 . 4 4 )  corresponds to  a realizable system i f  

d - v < 2 ,  ( 7 . 4 5 )  

4 

where d is the degree of the polynomial D. ( ) and v the degree of the 
3 H l k P ,  

polynomial F i k  

It is clear ly  not always possible to choose such a number of feedback 
amplif iers  that the s t ructural  conditions (7.45) a r e  satisfied.  
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When (7.45) is satisfied, the necessary realizability conditions a r e  in 
a sense satisfied also.  The sufficient conditions are satisfied if the 
degenerate equation of the multivariable system and the auxiliary equations 
of f i r s t  and second kind for  the ent i re  system satisfy the respective stability 
conditions. The stability conditions fo r  the degenerate and the auxiliary 
equations are generally satisfied by a judicious choice of the feedback 
pa rame te r s  Fik and p { k .  In any case,  this does not constitute a problem. 
We have thus proved the property of s t ructural  noise rejection f o r  general  
multivariable control systems.  

5 7.5.  SELF-ADJUSTMENT PROPERTIES IN A CASE 
WHEN THE DISTURBANCES CAN BE DIRECTLY MEASURED 

Consider an automatic control system where the plant properties 

In this section we will deal with a 
(character is t ics)  are highly sensit ive to external disturbances, which 
a r e  applied directly to the plant. 
ca se  when the disturbances acting on the controlled object can be measured 
directly. We s t a r t  with a discussion of single-variable systems,  and sub- 
sequently the r e su l t s  will be extended to multivariable control systems.  

Suppose that the automatic control system is optimal with regard to a 
certain quality cri terion. 
ignoring the action of noise, but the system drif ts  away from the optimum 
setting due to noise interference.  
and to choose the system pa rame te r s  s o  that the optimization attained 
without noise holds in the noisy case  too. 
it i s  assumed that the noises acting on the system can be measured. 
thus r ema ins  to apply the resul ts  of the theory of combined systems 
considered in Chapter Five. 

The system pa rame te r s  are calculated and chosen 

O u r  problem is to a l t e r  the s t ructure  

A s  w e  have previously remarked,  
It 

J 
FIGURE 7.6. Illustrating realizability with 
the aid of real  stabilizers. 

Take a single-variable control system shown diagramatically in 
Figure 7.6. 
K W , ( p )  and W 3 ( p )  are the t r ans fe r  functions of the control system and the 
stabil izer,  F ( p )  is the external disturbance; K W i ( p )  and W 3 ( p )  are so chosen 
that in the absence of disturbances F ( p )  the optimum process  (with r ega rd  
to a cer ta in  quality cri terion) is attained for  a sufficiently high gain K .  

In this  figure W , ( p )  is the t r ans fe r  function of the plant, 
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F o r  example, in automatic potentiometric control with nonlinear feedback, 
the optimum process  is attained when the system gain is infinite 1391. 
The system of course should remain stable as the gain is increased.  

F o r  K+ w the s t ruc ture  in 
Figure 7.6 without external  disturbances is equivalent to  the s t ruc ture  
in Figure 7.7 with external  disturbances. In other words,  measurable  
external disturbances can be rejected if they a r e  delivered a s  an additional 
signal to the s tabi l izer  input. 
of Chapter Five,  and i t s  proof is fairly obvious. 
function of Figure 7.6 without external disturbances is 

We will prove the following proposition. 

This  proposition follows f rom the resu l t s  
Indeed, the t ransfer  

In the limit K+ w we find 

(7.46) 

(7.47) 

The t ransfer  function of Figure 7.7 is obtained f rom the following 
equations: 

(7.51) 

i. e., the same expression a s  (7.47). We see that for  a sufficiently high 
gain, t'he system in Figure 7.7 behaves like an adaptive system in the 
sense  that i t s  charac te r i s t ics  remain fixed despite the presence of quite 
general  external  disturbances. 

7.6. CASE O F  NOISY PLANT (THE DISTURBANCES 
CANNOT B E  MEASURED) 

We now consider the case  of a plant whose charac te r i s t ics  a r e  a l te red  
by external  disturbances which a r e  not amenable to direct  measurement .  
This  is a very common case  in practice. 

system is then designed fo r  the noisefree case  and optimized by indefinitely 
increasing the gain K .  

Let the plant parameters  in the noisefree case  be known. A control 

Without noise, the sys tem has the s t ruc ture  shown 
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in Figure 7.6. 
t r ans fe r  function of the single-variable control system is 

We have shown in the preceding section that fo r  K + m  the 

We now proceed to  design the next s t ructure  (Figure 7.8). The control ler  
output ( X  in Figure 7.8) is delivered to the input of the r e a l  plant and to the 
input of a model with a t r ans fe r  function W;(p)(this is the t r ans fe r  function 
of the ideal, noisefree plant). The difference of output signals of the ideal 
and the r e a l  plant is delivered through a t r ansduce r  W,, ( p )  to the s tabi l izer  input. 

Figure 1.1. Application of stabilizers FIGURE 7.8. The use of an ideal plant. 
to noise rejection. 

The t r ans fe r  function of the system in Figure 7.8 is obtained f r o m  the 
re la t ion s 

X ( p )  = K WI ( p )  (ytef (PI - Out ( p )  - 
- w3 (P) [x (A  + (yo,, (P) - yb., (P)) wt, @)lL (7.52) 

yo"r (P) = wz (PI IX (P) + F 
yb., (P) = w; (PI x (PI. 

(7.53) 
(7.54) 

In the noisefree case  Wz(p)= W;(p) ,  and since in (7.52) -(7.54) the 
disturbances a r e  represented by a separate  t e r m ,  we write f rom the above 

I1 + KWi (P) Wa (P) + KWi (PI Wz ( P ) J  out (P) = 
= KWi ( p )  Wz (P) K=r (P) - Kwi ( p )  WZ (p) Wrr (PI W3 ( p )  F ( p )  + (7.55) 

+ Wz ( P I  F (PI + KWi @) Wz (PI W, (PI F (p).  

The s tabi l izer  r a t io  is so chosen that the s t ructure  is stable a t  infinite 
gain K .  Dividing (7.55) through by Y, we find in the l imit  K - t m  

I w3 (PI + w.2 (PI1 y 0°C (PI = 

= W2K.f (PI + [ WZ (PI w3 (PI - W,'(P) wtr (P) w3 (PI1 F (PI. (7.56) 

We see  f r o m  (7.56) that noise rejection is ensured if  the t ransducer  ra t io  
sat isf ies  the equation 

WZ ( p )  W3 (P) - w,' (PI wtr (PI w3 (PI = 0 

or 

(7.57) 
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A circui t  with a t r ans fe r  function - can be designed by the common wz (P) 
methods used in  the synthesis of s t ruc tu res  with infinite-gain stability. 
The higher the gain, the c lose r  the resultant t r ans fe r  function to the 
sought value. 

Xrp 

7 I r p  
I.rp 

- -  
7- "??P 

. __ . .- 

FIGURE 7.9. A n  example of a third-order system with variable Kh. 

A s  an example let  u s  consider the case  of a plant withthe t r ans fe r  function 

The t ransducer  ra t io  is 

(7.58) 

(7.59) 

Three  high-gain amplif iers  K h  a r e  connected in s e r i e s .  They a r e  

and 1 feedbaclc-controlled (Figure 7.9) by t r ans fe r  functions __ ~ 

l + T , P  ' 1 + T 2 P  
K T P  Trans fe r  functions of this kind can obviously be synthesized without 

To find the t r a n s f e r  function of the s t ruc tu re  in Figure 7.9, any difficulty. 
w e  s t a r t  with the equation 

Dividing the numerator  and the denominator of 
f ac to r s  by Yh, w e  find 

(7.60) 
I f L  

I + T P  

each of the three fractional 

(7 .61 )  1 
' 1 X r p  . 
q+w 

1 

K h  
Putting -=in, we obtain a f t e r  simple manipulations 

(7.62) 



(7.63) 

We have thus derived the desired t r ans fe r  function. 

in Figure 7.9 thus depends on the position of the roots  which tend to 
infinity a s  m+O. 
equation and to tes t  i t s  coefficients for  stability. Since a t e r m  K t p  en te r s  
the numerator  of the l a s t  feedback loop ratio, all polynomials multiplying 
the sma l l  pa rame te r s  a r e  of third degree and the additional conditions 
should therefore be checked for  the following equation only. 

Equation (7.63) is a degenerate equation. Realizability of the s t ructure  

To solve this problem, we have to draw up the auxiliary 

[KTP (1 + TIP) (1 + TsP) + (1 + TP)] + KTF. 

The small  pa rame te r  r a i s e s  the o r d e r  of the equation by two, and the 
additional conditions have the form ( s e e  Chapter Three) 

which is naturally always true.  
t ransducer  ra t io  can be obtained without difficulty. 
infinite: these a r e  l a rge  but finite numbers  and the t r ans fe r  function W,, ( p )  
is therefore realizable only to a cer ta in  accuracy, which is higher 
the higher the gain K h .  

in the multivariable case.  
controlled variable corresponds to optimization of the system a s  a whole. 
It will be c l e a r  f rom the following that this is not always true.  
present  stage we a r e  dealing only with the case  when each controlled 
variable can be optimized in the previously explained sense and when 
optimization of a i l  the controlled var iables  corresponds to optimization 
of the system a s  a whole. 

Now suppose that the disturbances which cannot be measured are 
applied to the controlled object in each variable. 
configuration shown in Figure 7.10, which is the i-th subsystem of the 
multivariable control system. 

se t  of equations in Laplace t ransforms 

We have thus shown that the required 
In reali ty,  K h  a r e  not 

Let u s  now consider the realizability of an extremum control system 
We will a s sume  that optimization of each 

At the 

We thus obtain a 

The behavior of the i-th controlled variable is described by the following 

(7.64) 
(7.65) 
(7.66) 

(7.67) 
(7.68) 
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(7.69) 

Eliminating the var iables  Vi, X ~ I ,  XI, YI. Y:ur between (7.64) -(7.69), we 

(7.70) 

o r ,  dividing both s ides  by Ws1(p) ,  

Putting i =  1, 2 , .  . . , n, we obtain a complete se t  of equations describing the 
multivariable control system. 

u 
FIGUKt '7.10. The use of an ideal plant. 

A s  we have previously shown the system can be optimized in relation 
to each controlled variable; the disturbances f i  together with the extraneous 
outputs provide the noise which in te r fe res  with the given variable. The 
optimum i s  thus attained if the extraneous outputs Y,, the disturbances 
f r  a r e  successfully eliminated. We see  f rom (7.71) that noise rejection 
can be achieved if  

1 (a) Wtr1(P)=-  
and 

(b) K i - f m ,  the system of course remaining stable a s  a whole. 
Making use  of conditions (a) and (b),  we find f rom (7.71) 
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or 

(7.72) 

o r  

An equation of this kind was derived in our  previous analysis of optimiza- 
tion of a single-variable system. 
interest  as a variant of multivariable sys t ems  where noninteraction is 
attained as  a byproduct of self-optimization of each subsystem, which by  
assumption corresponds to  optimization of the system as a whole. 
of fact, such self-optimization is feasible only if  noninteraction and 
invariance are ensured simultaneously. 

This  single-variable case is of some 

In point 

§ 7. 7. DISTURBAiSCES APPLIED A T  VARIOUS POINTS 
O F T H E F O R W A R D P A T H A N D I N T H E F E E D B A C K P A T H  

Consider the case when the disturbances a r e  injected a t  various points 
along the forward path, with the exception of the input, and also along the 
feedback path. This  case is i l lustrated in Figure 7.11. 

7.2 c lear ly  suggest that by increasing the gain of the forward path 
one can reject  a l l  the noises  acting in that path and compensate the 
contribution f rom the extraneous controlled variables.  Now, i f  the plant 
cha rac t e r i s t i c s  are al tered in response to these disturbances,  the result ing 
s t ructure  is equivalent in i t s  propert ies  to an adaptive system. The 
unsolved problem is noise rejection in the feedback path, but he re  we can 
apply the conditions of s t ructural  noise rejection derived in Sec. 7 . 2 .  

The r e su l t s  of 

FIGURE 7.11. Noise in forward and feedback paths 

Structural  noise rejection can be attained as follows (Figure 7.12). An 
amplifier is connected in the feedback path, immediately a f t e r  the output; 
i t s  gain can be made sufficiently l a rge  (theoretically infinite). 
amplifier with gain K;,, close to z e r o  is connected af ter  the noisy feedback 
element,  so that 

Another 

1 K - = 1  Ih K*h . 
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Simple calculations show that K l h + m ,  K2h-+0 ,  and Kit,&,= 1 the noise in the 
feedback path is effectively suppressed. 

I 

FIGURE 7.12. Illustrating noise rejecrion in the feedback path. 

In conclusion of this section let  u s  review the r e su l t s  of §I 7 . 2  and 7. 6. 
We have dealt there  with noisefree input signals,  
techniques have been essentially developed for  c a s e s  when the noises  are 
not amenable to direct  measurements .  
§ 7. 5 enabled u s ,  besides synthesis  of W,, ( p ) ,  to  ensu re  stabilization 
with the aid of simple passive circui ts ,  whereas  the method presented 
in this  section r equ i r e s  special  amplif iers  that real ize  sufficiently ideal 
derivatives.  

and this possibility is actually considered in § 7. 5. Indeed if noise 
rejection follows the method of § 7 . 2 ,  an increase in gain enhances 
the noise which is delivered to the input together with the reference signal. 
F r o m  this point of view, if noise is injected together with the reference 
signal, the suppression of a l l  other noises  that incidentally en te r  the 
system requ i r e s  unambiguous isolation of the original noise,  and this  is an 
obvious shortcoming of the method. 
if the spectral  composition of noise is different f rom the spec t r a l  composi- 
tion of the reference signal, the pa rame te r s  of the s tabi l izer  W,(p)  can be 
chosen so  as to minimize the input noise.  When the input is a mixture 
of the reference signal Yreri and noise f i n i r  calculations along the s a m e  
lines a s  before give the following expression for  the output in a system 
using a n  ideal plant: 

The noise rejection 

The use  of the ideal plant in 

The system propert ies  can a l so  be improved in the case  of noisy input, 

If an ideal plant is used, and especially 

(7.73) 

If W,(p) is appropriately chosen and the spectral  composition of the 
disturbance is taken into consideration, the contribution f rom the second 
t e r m  in (7.73) can be minimized. 

S 7.8.  SOME ADDITIONAL TOPICS AND ESTIMATES 

In the preceding discussion, a realizable s t ructure  was one that 
remained stable a t  infinite gain. 
cu r ren t  l i terature  h a s  a broader  sense,  and our  analysis  should be c o r r e -  
spondingly augmented. 

The concept of realizability used in 

Moreover,  when asymptotic methods a r e  applied 
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(in our  c a s e  the asymptotic behavior consti tutes transition to the l imit  
m-+ 0 or K +  to, one always h a s  to consider to what extent the theoretical  
r e su l t s  a r e  applicable in practice,  when the coefficients a f t e r  a l l  remain 
finite, and what e r r o r s  a r e  incurred in the asymptotic approximation. 
We therefore f i r s t  have to consider the following problems. 

In control sys t ems  (as in any dynamic system),  there  a r e  always 
some parasi t ic ,  spurious pa rame te r s  which a t  high gain may have a marked 
influence on system dynamics. 
con side red:  

i f  they can be made quantitatively as  small  a s  desired?:k 

parasi t ic  pa rame te r s  on system dynamics ? 

r a i sed  to a cer ta in  large but nevertheless  finite value. 
"sufficiently large" gain, o r  in other words what a r e  the numerical  values 
of gain fo r  which the r e su l t s  obtained assuming infinite gain are applicable ? 

1. 

Two aspec t s  of this  question should be 

(a) Will sma l l  pa rame te r s  have a marked influence on system behavior 

(b) How are we to determine the quantitative effect of small  but finite 

2 .  In r e a l  sys t ems  the gain cannot be made a rb i t r a r i l y  large:  i t  may be 
What consti tutes 

3 .  
W e  solve these problems by following the s a m e  procedure a s  before:  

What is the effect of cer ta in  kinds of nonlinearity on system behavior?  

f i r s t  w e  consider single-variable control system and then generalize the 
r e su l t s  to multivariable configurations. 

1 .  Quantitative estimation of small  pa rame te r s  

Let an automatic control system be described by an N-th o r d e r  differential 
equation. Moreover suppose that the system incorporates n sma l l  pa ra -  
me te r s ,  each increasing the o r d e r  of the equation by one. The character is t ic  
equation that corresponds to the degenerate differential  equation obtained 
when the n small  pa rame te r s  a r e  ignored is an algebraic equation of 
( N  - n) -th degree,  and i t s  general  form is 

a , p " - " + u t p ~ - " - ' +  . . .  +a,-,=O. ( 7 . 7 4 )  

Let the roots of equation (7 .74 )  be zir i =  1, 2,.  . . , A - n .  Then 

a&?-n+a,zN-'-'+ . .  . +aN-n=O. (7.75) 

Introduction of the small  pa rame te r s  has  a twofold effect. F i r s t ,  the 
roots  of the degenerate ecpation (7.75) a r e  a l tered;  second, n new roots  a r e  
added, which tend to infinity as the sma l l  pa rame te r s  approach zero.  

Let the introduction of small  pa rame te r s  a l t e r  the i-th root of the 
degenerate equation by Azi. 
acquire  corresponding increments Aui and N new t e r m s  with the coefficients 
A b i  appear  in the equation. 
sma l l  pa rame te r s  is thus written in the fo rm 

The coefficients of the degenerate equation 

The complete character is t ic  equation with 

A60 (2, + A z , ) ~ + A ~ ~  (z,+ AzJN-' + . . . f (a,+&J (zi 4- AzJN-" + 
+ (a, + Aut)  (2, + A z , ) ~ - ~ - '  + . . . + aN-n + AaN-,, = 0. (7.76) 

It is here that we encounter the problem of coarse and noncoarse systems ( i n  the sense of A. A .  Andronor) 
in  all its acuteness. 
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Expanding, we obtain 
N(N- I )  Ab, [z? + NzY-' Azi + ~ 21 Z " - ~ A Z :  1 + . . .] -I- 

+Ab, [ z f - I + ( N -  1 ) 2 ~ - 2 ~ Z i + ( N - 1 1 ) ( N - 2 ) z ~ - 3 A ~ ~ + .  2! . . I+ . . . 
. . . + U,Z?-" + U, (N - a) ~ Y - n - 1  A z ~  + . . . + Au,z?-" + 
+ Au,, (N - n) ZY-"-' Az, + . . . + uNdn + An,-"  = 0. (7.77) 

Making use  of (7.75) and ignoring t e r m s  of second and higher o r d e r s  of 
smallness ,  we obtain 

Ab,z? + AbizY-I + . . . + u,zp-" + 
+ Aa,zY-"-' + . . . + AU = cp' (z) I *==, A z i ,  (7.78) 

where ( P ' ( Z ) I , = ~ ~  is the derivative with respect  to z of equation (7.75) a t  z=zi  
F r o m  (7.76) we obtain 

A b o r Y +  A b , z Y - ' +  ... + A a , . ~ ~ - ~ + A a , z ~ - " - ~ +  .. . + AnN-" . (7.79) 
cp' (ap-*, Azj ~ 

This  expression r e l a t e s  the root increment to the increm-ents of the 
coefficients to t e r m s  of second o r d e r  of smallness .  

If the numerical  values of the sma l l  pa rame te r s  and the roots  of the 
degenerate equation a r e  known, the e r r o r  in the roots  calculated from the 
degenerate character is t ic  equation can be found using relation (7.79). 
the roots  of the degenerate equation a r e  real ,  relation (7.79) gives the 
e r r o r  in the decrements  of damping; if  the roots  are complex, relation(7.79) 
simultaneously gives the e r r o r  in the damping decrements  and in the f r e e  
oscillation frequencies of the system. 

Let the permissible  e r r o r  
be known (e. g, ,  in percent of the root of the degenerate equation); ou r  a im 
is to find such numerical  values of the small  pa rame te r s  that the e r r o r  
incurred when these pa rame te r s  a r e  omitted does not exceed the permissible  
e r r o r .  

Let the permissible  e r r o r  be E, so that 

If 

The problem can be approached differently. 

L k j  = EZi. 

The numerator  in the right-hand side of (7.79) is a known function of the 
sma l l  pa rame te r s  m. Putting f(m)for  this function, we rewri te  equation (7.79) as 

f (mu) = E W '  (4 I== ' i '  (7.80) 

Here  nzo is the largest  of the sma l l  pa rame te r s .  
The e r r o r  naturally does not exceed the permissible  value E i f ,  for  anym, 

m < m,. (7.81) 

In most  c a s e s  the effect of the small  pa rame te r s  on system dynamics 
can be quantitatively determined by considering only the e r r o r s  in the roots  
of the degenerate equation, although s t r ic t ly  speaking the change in the 
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position of the roots  generated by the sma l l  pa rame te r s  should a l so  be 
estimated. 

We have previously shown that when the small  pa rame te r s  approach 
ze ro ,  the roots  obtained from the auxiliary equation tend to infinity. 
reali ty,  however, the small  pa rame te r s  a r e  finite quantities, and the 
corresponding roots  a r e  therefore located not a t  infinity but a t  some 
finite distance f rom the origin. 

equation i t  is desirable to have the real roots  generated by the small  
pa rame te r s  considerably far ther  to the left f rom the imaginary axis  
than the leftmost root of the degenerate equation; alternatively, the 
absolute value of the complex root calculated with allowance for  the sma l l  
pa rame te r s  should be substantially g r e a t e r  than the absolute value of the 
complex root of the degenerate equation. Then, a l l  other conditions being 
equal, the transient components contributed by the small  pa rame te r s  will 
have a negligible influence on the overall  control curve.  

the fo rm 

In 

F o r  purposes of evaluation of the transient process  via the degenerate 

If there  a r e  rt sma l l  pa rame te r s ,  the auxiliary equation for  m + O  has  

c;+c,q"-'+ . . .  +c,=o. (7.82) 

The sma l l  pa rame te r s  modify (7.82) a s  follows: 

(C, + AC,) q"+ ( C - t  AC,) q"-'+ . . . 4- C, + ACn = 0. (7.83) 

Proceeding along the same  lines as before,  we obtain an approximate 
expression for  the e r r o r  in the i-th root due to the small  pa rame te r s .  

A b , 9 N t b b , 9 N - ' +  . . . + A u " ~ ~ - " +  ... + . I n N - ,  
- 

rp' (9) ,= , ,  Aq, = (7.84) 

where r p ' ( ~ ) J ~ = ~ ,  is the derivative with respect  to q of (7.82) for  q = q i .  
is known, the e r r o r  in the root can be  found. 
is given by the equality 

If qr 
The actual value of the root 

(7.85) 9 )  + A 9 )  
PI=,. 

The relations of this  section a r e  suitable for  the determination of the 

F o r  cer ta in  s t ruc tu res  the small  pa rame te r  is 
numerical  values of sma l l  pa rame te r s  which r a i s e  the degree of the 
equation a t  most  by one. 
the reciprocal  gain of the stabilized section of the control loop, and our  
relations can thus be applied to determine the gain. Seeing that 

we write (7.85) in the fo rm 

Pi = (91 + ' 4 0  K rt 

(7.86) 

(7.87) 

If K,,  is known, the t rue value of the root can be found f rom (7.87) 
The r e v e r s e  procedure is more convenient in practice:  f i r s t  find the 
roo t s  of the auxiliary equation with m = 0, then assuming a cer ta in  
permissible  e r r o r  Aq use  (7.87) to determine the gain K, . 
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2.  Coa r seness  in the sense  of A.A. Andronov 

Let each closed-loop subsystem of the control system have a cer ta in  
number of small  pa rame te r s  (in general ,  different subsystems need not 
have the same  number of small  parameters) .  
can be written in the form 

The start ing s e t  of equations 

(7.88) 

Here F , ( m p )  is a polynomial whose coefficients a r e  functions of the small  
pa rame te r s  m ;  Di(p), M i ( p ) ,  Ki and K :  a r e  the operators  and gain factors  of 
the controlled object and the controller in various closed-loop subsystems.  

Suppose that the parasit ic pa rame te r s  a r e  the time constants of the 
ser ia l ly  connected aperiodic elements in the loop. Then 

F ,  ( m p )  = m (A+ mp-l~p-l (PI+ . . . , (7.89) 

where p i s  determined by the number of small  pa rame te r s  introduced. 
Expression (7.89) i s  quite general ,  provided that each small  pa rame te r  

i nc reases  the degree of the equation a t  most by one. 
In this case,  however, the degree of the general  cha rac t e r i s t i c  equation 

inc reases  by an amount which is equal to the number of small  pa rame te r s  
introduced. The system i s  stable for  m+O i f  the auxiliary,  a s  well a s  the 
degenerate,  equation sat isf ies  the stability conditions. 
pa rame te r s  enter  the system in such a way that they a r e  equivalent to a 
chain comprising an appropriate number of aperiodic elements connected 
in se r i e s ,  the stability conditions a r e  automatically satisfied for  sma l l  m .  
In general ,  the small  parasi t ic  time constants can always be so adjusted 
that, i f  sufficiently small ,  they will not affect the stability of the system. 
Hence it follows that systems belonging to this c l a s s  a r e  coa r se  in 
A.A. Andronov's sense.  

If the parasi t ic  sma l l  

§ 7 . 9 .  DETERMINATION O F  GAIN 

The method developed in the previous section for the determination of 
sma l l  m and high K is universally applicable only in those cases  when the 
sma l l  pa rame te r s  r a i s e  the degree of the equation a t  most  by one. 

Before this method can be applied, the roots  of the degenerate and 
the auxiliary equation should be found. Determination of roots,  even 
those of the degenerate equation, often involves considerable difficulties, 
since the equation may be of a fairly high degree.  
supplement to the general  method, which is quite useful if  the effect of 
sma l l  time constants on system dynamics is to be found, we descr ibe 
in this  section some methods fo r  the determination of gain in a number 
of practically significant ca ses .  We a l so  consider the permissible  margin 
of variation of this gain for  which the previously derived ru l e s  of s t ructure  
synthesis hold true.  

Therefore ,  as  a 



1. Gain entering l inearly the character is t ic  equation 

In the simplest  s t ruc tu res  which retain their  stability a t  high gain, 
the gain, which may vary between wide l imits  without causing instability, 
is a l inear  component in the equation. A specimen s t ructure  of this kind 
is shown in Figure 7.13. 

FIGURE 7.19. A structure hi th  a real srabilizer. 

K1 and K 2  are the gains that can be varied between wide l imits.  The 
character is t ic  equation i s  

I 

II(1 +T,p)( l+rp)+KIK2[TP(l  +T,P) ( l  + T , p ) +  
i = 1  

f K3K4 (1 + Tp)] = 0. (7.90) 

The l imits  of KlKz  f o r  which the system rema ins  stable can be found 
without difficulty. 
D-decomposition curve in the K I K a  plane. 
tion curve in this ca se  i s  

If a l l  the other pa rame te r s  a r e  known, w e  plot the 
The equation of the D-decomposi- 

(7.91) 

The curve plotted from equation (7.91)  is shown in Figure 7.14. The 
numerical  values of the pa rame te r s  a r e  l isted in Table 7.1. 

T A B L E  7.1. 

FIGURE 7.14. Illustrating the determination of K , K ,  
limits. 
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We see f rom Figure 7.14 that the system is stable in two KIKZ intervals:  
the f i r s t  interval extends f r o m  KIK2= -0.6 to +0.7 and the second f rom 
K1K2 = 32 to + m. The second range determines the infinite-gain stability 
of the system. 
hold t rue is obviously K1K2= 32. In general ,  the character is t ic  equation 
fo r  the s t ruc tu res  considered in this  subsection can be written in the fo rm 

The least  value fo r  which all the preceding conclusions 

and the c ros sove r  values of K 
regions of the D-decomposition curve 

are determined by examining the stable 

(7.93) 

One of the stable regions of necessi ty  extends to infinity. 

2 .  Gain entering nonlinearly the character is t ic  equation 

Quantitative estimation of gain in this ca se  is a much m o r e  complicated 
undertaking, especially if we are interested in the whole range and not in 
some single gain value from the stability region. 
solved in application to s t ruc tu res  with infinite-gain stability. 

a whole range of gain values where the system is stable.  
are replaced by their  reciprocals ,  we obtain a cer ta in  region of sma l l  
quantities where the system is stable.  
useful in what follows. 

equation of this c l a s s  of s t ruc tu res  with n high gains can be writ ten in 
the form 

The problem will be 

Since the system rema ins  stable as the gain is increased, t he re  ex i s t s  
If the high gains 

This  transformation will be found 

We have previously shown ( see  Chapter Three)  that the character is t ic  

m"FNo (p )  -k mn-'FN1 (P) -k m n - 2 F ~ 2  ( P )  + . . . 
. . .  - k m F N , _ , ( p ) f F ~ ~ ( p ) = O ,  (7.94) 

where m = l / K .  If the high gain pa rame te r s  a r e  not equal numerically,  the 
character is t ic  equation is nevertheless  written in the fo rm (7.94), but the 
coefficients of the polynomials depend on some coefficients qj which expres s  
the relationship between K,  and Ki.  

powers of the sma l l  pa rame te r s  m can be written as 
The equation of the D-decomposition curve for  a sequence of descending 

(7.95) 

We s e e  that the sma l l  pa rame te r  to the i-th power is followed by the 
equation of the D-decomposition curve in the plane of that parameter ,  
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provided that all the other  sma l l  pa rame te r s  and the i r  D-decomposition 
equations are ignored. Putting 

(7.96) 

we r ewr i t e  equation (7.95) in the fo rm 

mn = D , ( j w )  ( i n n - ] -  Dn-,(ju) (mn-2- Dn-2( jw)  [inn-3- 
- D D n - 3 ( j ~ )  . . .  ( m - D ( j w ) ) .  (7.97) 

W e  have thus obtained an equation f rom which the limiting values of the 
reciprocal  gain can be determined. 

3. Initial conditions 

We have previously shown that for  sufficiently high gain of the stabilized 
elements,  the t ransient  is fully described by the degenerate equation. 
r e su l t s  were obtained assurr ing z e r o  initial conditions for  the transient.  
In what follows we will show that the same  conclusion is applicable in the 
general  ca se  of nonzero initial conditions. 
is moreover  important because the r e su l t s  can be applied when t h e  system 
performance is a s ses sed  in t e r m s  of the degree of stabil i ty.  *) 

These 

(The problem of initial conditions 

Let the initial conditions be 

x(t)I,=,=x, and x(i ' ( t )I ,=, ,=O ( l = l ,  2, . . .  N - I ) .  (7.98) 

The roots  of the character is t ic  equation are designated z , ,  z 2 . .  . . , zn. 
Since the system i s  stable, z ,  i s  either a negative r e a l  number o r  a 

complex number with a negative r ea l  part .  
is expressed by the equation 

The f r e e  transient component 

N 

x ( t )  = 2 Aiezif, (7.99) 
/ = I  

where A i  are integration constants. 
To  determine the N integration constants, we draw up N equations for 

the N initial conditions. Making use of (7.98), we obtain f rom (7.98) 

(7.100) 

T s y p k i n ,  Ya.Z.  and P.V. B r o m b e r g .  0 stepeni ustoichivosti lineinykh sistem (Degree of Stability 
of Linear Systems). - Izvestiya A N  SSSR. tech. sci. div., No. 12. 1945. 
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The determinant of (7.100) is 

A =  

1 1 ... 1 
ZI z2 ... ZN 
2; 2; . . . 2; 

(7.101) 

The i-th integration constant is thus given by the equality 

A,=&.  (7 .102)  ' A '  

Ai is the determinant (7.101) where the i-th column has  been replaced by 
the right-hand s ides  of equations (7.100). 

Suppose that the system has  I I  sma l l  pa rame te r s ,  each increasing by one 
the degree of the equation. Then n out of the total of N roots  recede to 
infinity a s  the ri sma l l  pa rame te r s  approach ze ro ,  and the other A'- n roots  
remain finite (in the l imit  they a r e  equal to the N - n  roo t s  of the degenerate 
equation). 

in minor s  of (.V-n)-th degree.  
s ee  that 

The Laplace theorem i s  now applied to expand the determinants A and A i  
Allowing n roots  to recede to infinity, we 

lim A; = A i ,  
2, + - 

where 

i=I ,  2, . . . ,  N-tln; j = N - t l +  1, , , , (  N 

and 

(7.103) 

(7.104) 

where A ;  is the integration constant determined f rom the complete equation, 
A i  the corresponding constant determined from the degenerate equation. 

sufficiently large,  the integration constants obtained f rom the degenerate 
equation a r e  sufficiently close to the corresponding integration constants 
determined f rom the complete equation; the other  integration constants 
approach zero.  

the t ransient  derived f rom the degenerate equation is sufficiently close 
to the t ransient  derived from the complete equation. 

Thus, when the roots generated by the small  pa rame te r s  become 

Ilence it follows that when the ignored pa rame te r s  are sufficiently small ,  

Consider a different s e t  of initial conditions: 

The preceding r e su l t s  a r e  fully applicable in this ca se  too, provided 
that Ai  and al l  A j  a r e  finite. 
tion following the procedure outlined above. 

This can be easi ly  verified by direct  computa- 
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I 7.10. THE EFFECT O F  SOME NONLINEARITLES 

The preceding resul ts  a r e  fully justified for  sys t ems  described by 
l inear  differential equations with constant coefficients. 
remarked in the previous section, the gain i s  always finite in practice 
and the parasi t ic  t ime constants can be made a rb i t r a r i l y  small .  
evaluation methods developed above could have applied in this case,  but 
unfortunately, in real systems,  some elements  may be nonlinear. W e  
consider here  some kinds of nonlinearity and t ry  to establish how they 
affect the s t ructural  properties of sys t ems  of this c lass .  

variable system. 
control systems.  

A s  we have 

The 

F o r  the sake of simplicity, we again s t a r t  with the analysis of a single- 
The resul ts  a r e  then readily extended to multivariable 

The nonlinearity considered in this section is such that 5 > 0 a t  a l l  

points of the steady-state character is t ic  ( x ,  i s  the input and xz is the output). 
A suitable example of these nonlinearities is provided by magnetization 
curves of e lectr ic  motors ,  and other s imi l a r  character is t ics .  

of sys t ems  with nonlinear stabilized elements.  
the gain of the closed loop formed by the nonlinear element and the 
s tabi l izer  may vary between wide l imits .  

W e  will a lso consider thr effect of these nonlinearit ies on the dynamics 
It will be assumed that 

I -~ I 

FIGURE 7.15. Esrirnating the efft,ct of ~nonlineartties. 

Figure 7.15 i s  a block diagram of an N-element control system with 
n nonlinear elements whose steady-state character is t ics  satisfy the 

conditions ~ > O .  A l inear  amplifier i s  connected in s e r i e s  wi th  each 

nonlinear element,  and each pair  of this kind i s  embraced by a stabil izer 
F n 1 ( p ) .  

amplifier,  and a stabil izer has  the fo rm ( see  Figure 7.15). 

d x 

The result ing s t ructure  is stable a t  infinite gain. 
The equation of a single loop comprising a nonlinear element, an 

o r  

(7.106) 

209 



where p = d .  Here Ki is the gain of the l inear  amplifier,  % the gain of 

the nonlinear element,  F,,,(p) derivatives f rom f i r s t  to ( s i  -2)-th o r d e r ,  
where 9i is the degree of the self-operator Qi(p) of the stabilized element.  

dt  

.-mi, we write Dividing (7.106) through b y K I s  and putting-- I 
dXi  + I Ki - 
dXI 

dXI 

(7.106) in the fo rm 

[miQi ( P )  + F n i  (P)] X / + i  = Xi .  (7.107) 

Here  m is a variable and i t s  value is determined by the position of the 
element 's  working point on the nonlinear character is t ic .  

If the number of nonlinear elements is n and the total  number of e lements  
N ,  the equation for  the N-th controlled variable is 

(7.108) 

The character is t ic  equation generated by (7.1 08) sat isf ies  the stability 
conditions for  m,+O (or, equivalently, Ki+m) if  and only if  the degenerate 
character is t ic  equation 

and the auxiliary equation of f i r s t  or second kind satisfy the stability 
conditions. 

transient is fully determined by the degenerate equation 
If these conditions a r e  satisfied, then for  sufficiently sma l l  m < mo the 

(7.109) 

1 Thus, i f  the gain can be made sufficiently large,  s o  that-=m<mo, 
dXI 

nonlinearity of the kind being considered will have virtually no influence 
on the process .  

Since for  nonlinearit ies of this kind the equivalent gain 1391  is represented 
by a r e a l  segment, the gain K i  and the s tabi l izer  pa rame te r s  can be so 
chosen that the gain-phase plot does not intersect  with this  segment, o r  
else the intersection is a t  very low gains and the system can be regarded 
as stable on the whole. 

Under these conditions i t  only r ema ins  to find the numerical  value of m, 
and as long as mi<mo, the nonlinearity can be ignored. 

Stability a t  high Ki is ensured by introducing ideal derivatives of up to 
( p  -2)-th o rde r .  
derivatives often involves considerable technical difficulties. Instead of 
ideal derivatives one therefore normally u s e s  s tabi l izers  with a t r ans fe r  

function z. We thus proceed to consider the effect of nonlinearity on 

the dynamics of sys t ems  with j-& stabi l izers .  The self-operators  Q i ( p )  

'yi dXi+l 

We have established that the system is necessar i ly  stable in the sma l l .  

A s  w e  have already remarked,  the generation of these 

l + T P  
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in  this ca se  are a t  most  of second degree.  
e lement  is 

The equation of the i-th 

Q i  ( p )  Xi+,  = Ki (Xt  - Xi>* 

where X; is the s tabi l izer  output, 
The s tabi l izer  equation is 

(1 -t TP) xi = Tpxi + I .  

Eliminating Xibetween (7.110) and (7.111), we find 

[Qi (PI (1 + V) + Ki V] Xi+, = Ki (1 + ~ p )  xi. 

(7.110) 

(7.111) 

(7.112) 

d Differentiating in the right-hand s ide of this equation p c Z ,  we find 

o r  

[ Qi (P) (1 

Dividing 7.113) through by Ki*and putting as before  

we find 

In distinction f rom the case  of stabilization via ideal derivatives, the 
right-hand side of equation (7.114) contains a l inear  t e rm ( I + r p ) X i ,  which 

does not add to o u r  difficulties, and a t e r m  dependent on c‘xi+! 
nonlinear effect cannot be a s ses sed  unless  the las t  t e r m  in (7.114) is 
est imated.  

Figure 7.16 is the free-running charac te r i s t ic  of an e lec t r ic  motor: 
this is a typical plot of nonlinearities with which we are concerned. 

sect ions ab and cd we have a = const, and when the working point of 

the nonlinear element is situated on these sections of the character is t ic ,  
the las t  term in (7.114) vanishes. It remains  to consider the case when 
the working point is on the section bc.  
and well-behaved over  this section (as is the case  for  mos t  real elements), 
the las t  t e r m  may again be ignored, since i t  will slightly a l t e r  the 
coefficients of the equation without changing its degree.  

d X ,  * The 

Over  

dXi 

If the charac te r i s t ic  is smooth 

Thus, if the 
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gain of the l inear  amplif ier  is sufficiently high, the nonlinearity virtually 
does not affect the dynamics of the system. 

FIGURE 7.16. A saturation characteristic. 

Strictly speaking, the system should have been tested fo r  stability 
V. M. Popov's method / 2 0 /  provides a logical approach in the large.  

to this  problem. However, there  is no need to proceed with the general  
tes t  for  the very simple reason that the gain-phase plot of the open-loop 
system, which is needed f o r  testing the stabil i ty in the large by Popov's 
method, cannot be constructed unless the numerical  values of the system 
pa rame te r s  a r e  known. A qualitative gain-phase diagram do.es not yield 
any additional information, since in this c l a s s  of s t ruc tu res  t h e  l inear  
par t  m.ay have a virtually a r b i t r a r y  character is t ic .  

systems,  but the r e su l t s  are readily extended to the multivariable case. 
An example of this generalization is provided by the preceding analysis  
of an n-loop system with nonlinearit ies.  

In this section, a s  in S 7.8,  w e  have dealt with single-variable 

S 7.11. S Y S T E M S  WITH A RELAY ELEMENT 

The use of re lay elements  in control c i rcui ts  is of considerable interest  
T o  avoid any misunderstanding fo r  some problems discussed in this book. 

we wish to s t r e s s  that this  is not an exposition of the theory of re lay 
sys t ems .  
a t  least  to  t h ree  factors ,  
when the deviations a r e  sufficiently small .  
with an a rb i t r a r i l y  large gain and a zero-slope character is t ic  in the 
saturation zone can be simulated by a r e l ay  element and, conversely,  
a re lay element can be replaced by an amplifier with such a character is t ic .  
Second, i t  h a s  been demonstrated in a number of studies on optimum 
control (see,  e.g. ,  1541) that an element with a relay character is t ic  is 
an indispensable component of optimum control sys t ems  and a s  such of 
considerable interest  in o u r  analysis.  
r e l ay  system is a fundamental operating mode of the ent i re  c l a s s  of 
so-called v a r i a b l e - s t r u c t u r e  s y s t e m s  1 8 1 ,  which have recently 

Our  interest  in e lements  with a relay character is t ic  is due 
F i r s t ,  the r e l ay  element has  an infinite gain 

In this  s ense  any amplifier 

Third,  the sliding action of a 
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become quite popular in the theory of automatic control. 
in the l i t e ra ture  18, 711 and wi l l  be demonstrated in the following that a 
sliding-action re lay  system is equivalent in some of i t s  propert ies  to an 
infinite -gain system. 

(1) stable equilibrium, and (2)  sliding regime. 

It has  been shown 

We will consider two operating modes of sys tems with relay elements:  

1. Stability of re lay  sys tems 

Here we a r e  concerned with the stability of equilibrium under smal l  
deviations f rom the s teady-state  value (stability in the small) .  
a s  such is interpreted in the conventional sense .  

position which includes x ( t ) =  0 is obtained both in the case  shown in 
Figure 7.17a, where the equilibrium point is 0, and in that shown in 
Figure 7.17b, where 

Stability 

The re lay  charac te r i s t ics  depicted in Figure 7.17 show that an equilibrium 

x - x,<x<x+x,.  

Here x ( t )  is the input signal of the relay element.  

a b 

FIGURE 7.17. Relay characteristics: 

(a)  an ideal relay. (b) a relay with an insensitive zone. 

We a r e  par t icular ly  interested in the case  x =  0 (F igure  7.17a). The 
stability of blind-zone relay sys tems (F igure  7.17b) i s  determined by the 
l inear  par t  of the system:::, since for  x ( 0 )  - x < x , < x ( O )  < x ( O )  + x  the re lay 
element does not affect the l inear  par t  and the en t i re  configuration behaves 
a s  an open-loop sys tem.  

the l inear ized system. Figure 7.18 is a block diagram of a re lay  control 
system. The en t i re  l inear  par t  is represented by a single block with a 
cer ta in  t ransfer  function, and the relay element is depicted separately.  
It is implied that the l inear  par t  of the system is structural ly  representable  
a s  a one-loop circui t  without local (internal) feedback. The equation of 
the l inear  par t  is found without difficulty. 

The analysis  of stability will be based on the charac te r i s t ic  equation of 

Let  u s  consider  the re lay  

’ T s y p  k i n ,  Ya.Z. 
systems). - Gostekhizdat. 1955. 

Teoriya releinykh sistem avtomaticheskogo regulirovaniya (Theory of Relay Control 
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element in some detail. 
discontinuous and nondifferentiable a t  the origin. 
of the method of smal l  deviations and of the variational equation therefore  
r equ i r e s  special  proof. 
with the aid of the resu l t s  derived by Pontryagin and Boltyanskii 1 5 3 1 ;  
physical arguments  will be found in Tsypkin's book mentioned in the 
footnote on the previous page. Now, the equation of the r e l ay  element 
(F igure  7.17a) is 

X,, =Q,(X)X1n. (7.1 15) 

The re lay  charac te r i s t ic  (F igure  7.17) is 
The very  applicability 

The variational equation can be shown to apply 

where 
{ +xour f o r  x,, > 0 ,  

Q, (X) = -xour for  xh < 0. (7.11 6) 

The charac te r i s t ic  (7.115) can be replaced by a continuous curve which 
has  a finite derivative a t  the origin, W ( 0 )  # 00 (F igure  7.19). 
charac te r i s t ic  is then obtained f rom that shown in Figure 7.19 by letting 
the angle p approach 90" and @'( 0) +oo. 
re lay  is thus replaced by the equation of an iner t ia less  amplif ier  of 
infinite gain: 

The r e a l  

The variational equation of the 

n out = @' (0) Xl", (7.117) 

where 
W(O)=K,=CO. 

The s t ruc tura l  diagram of the system corresponding to this variational 
equation is given in Figure 7.20, where the relay element has  been replaced 
by an infinite-gain amplifier. 
readi ly  be written. 

The equation of the ent i re  system can now 

FIGURE 7.18. A block diagram of 
a system with a relay. 

FIGURE 7.19. Illustrating the transition 
K ,  -+ co. 

To avoid complications with stabil izers,  we f i r s t  consider a system with 
a single-loop l inear  part .  The t ransfer  function of the l inear  par t  is K. Q (P) 
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The t r ans fe r  function of the en t i re  closed-loop system ( s e e  Figure 7.20) 
is then 

or 

The charac te r i s t ic  equation is thus 

(7.118) 

(7.119) 

It d i rect ly  follows f rom (7.119) that the system is unstable if  Q ( p ) i s  of 
higher than second degree. 
sys tem is stable if 

When Q ( p ) i s  of first or second degree,  the 

BI A I  - _ _  > o o r  % > o .  
A0 

Both conditions a r e  satisfied in o u r  case  provided that the coefficients 
of p and p z i n  Q(p)a re  positive, since A I =  0. 

FIGURE 7.20. The equivalent FIGURE 7.21. Illustrating the stability 
circuit. of a relay system. 

Any additional finite t ime constant, however small ,  will render  the 
sys tem unstable. Therefore ,  in pract ice ,  configurations like the one 
in F igure  7.20 a r e  unstable in the small .  

to make the sys tem stable,  It is c lear ,  of course,  that no s tabi l izer  will 
do the job unless  the re lay  element is a l so  included in the stabilized loop. 
Indeed, Figure 7.21 is a s t ruc tura l  diagram of a system where the s tabi l izer  
e m b r a c e s  only the l inear  par t  of the system. 
s t ruc ture  is 

Let now Q(p)  be  of higher than second degree in p. A s tabi l izer  i s  needed 

The t ransfer  function of this 

f (PI = ( 7.12 0) 
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The character is t ic  equation is obtained by putting the denominator of (7.120) 
equal to ze ro ,  thus: 

Q (P) Fn, (P) + KFn, ( p )  + KcKFn, (PI = 0. (7.12 1) 

Dividing both s ides  of (7.121) by K ,  and putting I = m ,  we find 
K c  

The difference in the degrees  of the polynomial in b racke t s  and the 
polynomial KF,, is determined, as before,  by the degree of the polynomial 
Q ( p ) .  
is stabilized, the r e l ay  remaining outside the s tabi l izer  loop. 
way to ensure stability is to let  the s tabi l izer  embrace  the section that 
includes the relay element.  

This conclusion is not affected i f  only the l inear  pa r t  of the circui t  
The only 

) Fn,IpI 

FIGURE 7.22. A more general case. 

F igure 7.22 is a s t ructural  diagram of a control system where the 
s tabi l izer  loop encloses  the relay.  
we write the closed-loop t r ans fe r  function in the fo rm 

In the nomenclature of F igu re  7.22, 

(7.122) 

The character is t ic  equation is thus 
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A system satisfying condition (7.124) is stable in the small i f  the 
degenerate equation 

KIF", (PI 4 2  (P) + K I K z F ~ ,  (PI = 0 

meet s  the stability requirements  and the following conditions are fulfilled: 

o r  
BI Ai 
Bo 
--_ A, > 0 if  n,+q, - n, =2. 

In o r d e r  fo r  a relay system to be stable in the small ,  i t  should be 
s t ructural ly  stable a t  infinite gain. 
fo r  the infinite -gain amplifier.  

A relay is substituted in the l imit  

K. if, 

- 
FIGURE 7.23. A system wi th  n relays. 

Let u s  consider a control system with n re lay elements.  This system 
can be made stable in the small  with the aid of n stabi l izers ,  which may  
be connected in two alternative configurations. Figure 7.23 is a s t ruc tu ra l  
diagram showing the s tabi l izers  connected according t o  the f i r s t  configura- 
tion. We will derive the t r ans fe r  function of this system assuming sma l l  
deviations. For  the i-th r e l ay  and the l inear  section encompassed by the 

i-th s tabi l izer  of a general  kind -, the t r ans fe r  function is writ ten as 

(7.125) 

K l  __ 
01 (P)  Seeing that t he re  is a total of n re lay elements  and putting 

]="+I 

fo r  the t r ans fe r  function of the unstabilized section of the system, we 
obtain the following expression f o r  the closed-loop t r ans fe r  function: 

(7.1 2 6 )  
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Dividing the numerator  and the denominator in (7.126) by K: and 
I putting -=mv,  we wri te  

K)I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Putting the denominator of (7.127) equal to zero ,  we obtain the charac te r -  
ist ic equation of the system. 
resulting configuration is s t ructural ly  stable a t  infinite gain. 
the system will be unstable. 
is actually ensured if  the degenerate equation FN,(~) and the auxiliary 
equations of f i r s t ,  second, or third kind each satisfy the corresponding 
stability conditions. 

behavior of the sys tem is determined by the t ransfer  function obtained 
from (7.127) putting m= 0, i. e.,  

The s tabi l izers  should be so chosen that the 

If the s t ruc ture  is cor rec t ly  chosen, stability 
Otherwise 

If the gain remains  high in the case of la rge  deviations too, the t ransient  

(7.128) 
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In fact we can speak only of some averaged gain, which is determined 
The higher the input, the lower by the ra t io  of the re lay  output to input. 

is the averaged gain. 

system with s t ruc tura l  infinite-gain stability. 

Near  the origin, even the averaged gain is fairly high. 
Let u s  now concentrate on the physics of the process  in an n-relay 

(a) The s tabi l izer  is such that each smal l  parameter  m = K  r a i s e s  the 

degree of the charac te r i s t ic  equation by one, 
ra t io  is 

There  a r e  two possibilities: 
1 

In par t icular ,  if  the s tab i l izer  

U P ) = -  T P  

and the re lay  is iner t ia less ,  the forward path of the loop formed by the 
re lay  and the s tabi l izer  may include only a single element with a f i r s t -  
o r d e r  equation. 

a l inear  element &, a relay with a gain K c i ,  and a s tabi l izer  A is 

written in the form 

In the general  case,  the t ransfer  function of a closed loop comprising 
F (P) 
F,, (P) 

If there  a r e  n such loops, and the total number of e lements  i s  N, the 
t ransfer  function i s  

The charac te r i s t ic  equation i s  obtained by putting the denominator of 
(7.130) equal to zero:  

n 

Dividing (7.131) through by ] I K i K c i  and putting-=ml, 1 we assume 
i = 1  KiKc i 

that Ki and K i = K  a r e  re lated by K i = q i K , = q i K  and thus write (7.131) in the form 

m"FN, ( P ) - t m " - ' F ~ ~ - i  (P)$-m"-2F~,-2+ . . . 
. . . +mFN-n+i(p)+F~.-n(p)=O.  (7.1 32) 

N n 

1 = 1  f = I  
Here  No is the degree of the charac te r i s t ic  equation, equal to 2 qi + 2 nZi,  

and the subscr ip ts  of F designate the degree of the corresponding polynomial. 
The t r ans fe r  function (7.130) f o r  this case  takes  the form 

219 



(b) The stabil izer is such that each small  pa rame te r  m = L  i nc reases  uiu c 

the degree of the equation by two. 

with a t r ans fe r  function -X- and an iner t ia less  relay,  the forward path of 

the loop formed by the relay and the stabiIizer may include a single 
second-order  element (e. g., an oscil lator) or two f i r s t -o rde r  e lements  
(aperiodic o r  integrating). 

character is t ic  equation in the form 

For the par t icular  ca se  of a s t ab i l i ze r  

l + T P  

In the general  case,  making use of the notation in (a) ,  we write the 

m"F,~(p)+m"- 'Fn; . - z (p)+ m"-'FN-,(p)$_ . .  . + F N - ? " ( P ) = ~ .  (7.132)' 

The corresponding t r ans fe r  function is 

6 uj iJ F" i (P )  

( 7.133)' ~ _ _  .___ j =  n + l  1 = 1  

mnFNo ( P ) $ . m " - ' F N , _ 2 ( P ) + m " - 2 F N , - 4 ( P ) +  . .  . + F N , - 2 n ( P )  ' 
K2 ( P )  = 

A relay with the unit s tep character is t ic  shown in Figure 7.17a is stable 
only if  the input signal is z e r o  ( x =  0). Integrating sys t ems  a r e  therefore  
assumed in both cases ,  which a r e  in equilibrium for  Y =  0. 

2 .  Sliding mode 

Sliding-action relay sys t ems  have been investigated in considerable 
detail /11, 17, 13 / .  The physics of the sliding mode h a s  been established 
and the relationships to be satisfied f o r  a system to operate in the sliding 
mode have been derived. 

We a r e  interested in sliding action in connection with the following 
problem. 
the question of how the infinite gain is to be realized. 
of c a s e s  the gain values for  which al l  the preceding r e su l t s  hold t rue a r e  
readily attainable, as they fall  in the range of common gain values of 
control sys t ems  (300-1000). 

We have shown for  saturable nonlinearit ies with a positive slope factor  
in the saturation zone that introduction of an amplifier of sufficiently high 
gain in s e r i e s  with the nonlinear element t r ans fo rms  the system t o  a 
high-gain s t ructure .  In the case  of a r e l ay  character is t ic ,  the slope 
in the saturation region is zero.  
and will be demonstrated in the following that ,a sliding-action r e l ay  system 
is equivalent to an infinite-gain l inear  system. 

W e  now proceed to synthesize a s t ructure  which will be equivalent to  a 
l inearized system and derive the equations that descr ibe i t s  dynamics. 
Figure 7.24 is a block diagram of a re lay system. 

The use of s t ruc tu res  with infinite-gain stability always raises 
In the great  majority 

It has  been shown in the l i terature  1711 

Nomenclature: 
K(p)= the t ransfer  function of the unstabilized section; 
F,(p)= the stabil izer t ransfer  function: 
R.  E.= a relay element with an ideal character is t ic  (without an insensitive 

zone) ; 
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the t r ans fe r  function of the stabilized element in series with R E ;  
the t ransform of the reference signal; 
the t ransform of the output; 

the t ransform of the stabil izer output. 
Yre, (PI - y (P); 

x@/ R.E. 4 CP/ u m  F r T  
6 fP/ 

~ 

FIGURE 1.24. Illustrating the sliding-action conditions. FIGURE 1.25. A linearized system. 

Let the system operate in the sliding mode. Then, a s  w a s  shown in 
1 8 ,  711, the relay element oscil lates a t  infinite frequency with infinitesimal 
amplitude. The relay input w ( f )  can be taken as zero,  so that 

n (4 = Y,,f(4 - Y ( 4  - (4 = 0, (7.134) 

and this is equivalent to  an infinite-gain relay.  
this r e l ay  system is thus a s t ructure  where an infinite-gain l inear  amplifier 
is substituted for  the relay element. 
system is equivalent to a sliding-action relay system. 

We s e e  f rom the diagram that the input signal in this c a s e  is 

The l inear  equivalent of 

The degenerate par t  of this  l inear  

Structurally,  the l inearized system can be depicted a s  in Figure 7.25. 

x1 = Y,.f ( 4  - Y (4. (7.135) 

The equation for  x , ( t )  in Laplace t r ans fo rms  is 

o r  

and the equation fo r  the output y ( t )  is obtained by inserting fo r  x i ( t )  in 
(7.136) i t s  expression f rom (7.135), thus. 

The preceding considerations are meaningful if the system rema ins  
stable, i. e., if the conditions of infinite-gain stability are fulfilled. 
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Our  analysis  shows that continuous sliding action is possible i f  a t  any 
t ime the external  impulse x i ( ( )  var ies  a t  a s lower r a t e  than the internal-  
feedback impulse z(f) ,  i. e., if 

I Ai (4  I < I ( 4  I 9  (7.138) 

and it is only on this condition that the re lay  system can be replaced by 
a l inear  equivalent. 

Following Y a .  Z .  Tsypkin, we proceed to determine the condition of 
existence of continuous sliding action in t e r m s  of sys tem pa rame te r s  and 
external  impulses.  We f i r s t  have to express  z(f) and xi(f) in explicit form.  
From Figure 7.24 we see  that 

but since 
K C  9 [@(O) ]  =L?[ +K,[ = f -, P 

(7.140) 

We see f r o m  (7.140) that z ( t )  depends on the parameters  of the internal 
loop. A s  regards  x t ( t ) ,  we have from (7.136) 

Making use of the known propert ies  of the Laplace t ransform,  we wri te  

(7.141) 

If z ( t )  and k ( t ) a r e  determined f rom (7.142), (7.143) and the resu l t s  a r e  
substituted in (7.138), we obtain the conditions of continuous sliding action. 

A sliding-action relay sys tem is thus equivalent to an infinite-gain l inear  
system. 
example of a r ea l  system with a rb i t ra r i ly  high gain. 
often very convenient fo r  sys tems where amplif iers  have re lay  
charac te r i s t ics .  

A relay system in the sliding mode can thus be regarded a s  an 
This  approach is 
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7.12. THE PROBLEM O F  SENSITIVITY 

One of the methods to synthesize fixed-structure sys t ems  equivalent 
to adaptive sys t ems  is by choosing a configuration where the principal 
dynamic propert ies  are independent of a wide-range variation of cer ta in  
plant pa rame te r s  o r  even of cer ta in  cha rac t e r i s t i c s  of system components. 

Bode was the f i r s t  to introduce the concept of s e n  s i t i  v i t y , which 
essentially determines to  what extent a change in the pa rame te r s  of the 
individual e lements  affects the dynamics of the system as  a whole. This 
approach has  established an intimate relationship between the synthesis 
of f ixed-structure sys t ems  equivalent to adaptive sys t ems  and the design 
of s t ruc tu res  which are insensit ive o r  l i t t le sensit ive to variation between 
wide l imi t s  of plant parameters ,  plant character is t ics ,  or cha rac t e r i s t i c s  
of individual system elements.  

The problems t reated in this  book a r e  directly re la ted to the var ious 
topics which are considered in the l i terature* under the separate  heading 
of control system design. In this category, e .g . ,  there  is the problem 
of a low-damping oscil latory plant, of the so-called z e r o - s e n  s i t i  v i t y 
s y s t e m s **, where positive and negative feedback are used simultaneously, 
etc.  
application of positive and negative feedback, i t  is shown in Chapter Six 
that, unless  special  measu res  a r e  taken, this  solution yields noncoarse 
sys t ems  (in the sense of A.A. Andronov). However, the main point he re  
is that the synthesis of sys t ems  which are insensitive to variation of 
pa rame te r s  and character is t ics  of the controlled object o r  of some 
component e lements  is an inherently s t ructural  problem. 
system is not only an illustration but a convincing proof that the desired 
propert ies  are ensured only by appropriately designed s t ructures .  W e  
know that the sensitivity to pa rame te r  variation in a negative feedback 
loop diminishes a s  the gain is increased. However, increase of gain may 
lead to system instability. 
a s t ructure  which w i l l  ensure the necessa ry  gain without losing i t s  overal l  
stability. 

Absolute or  relative changes in the dynamic propert ies  of the system 
a s  a function of pa rame te r  increments  can be used as sensitivity indices. 
Bode introduced the following sensitivity index with a definite physical 
meaning. Let K ( p )  be the closed-loop t r ans fe r  function. The sensitivity 
is defined as the rat io  of the change in the closed-loop t ransfer  function 
to the change in the plant t ransfer  function, i. e., 

A s  r ega rds  the achievement of z e r o  sensitivity by simultaneous 

A feedback 

The problem is therefore again to synthesize 

An alternative definition of the sensitivity coefficient has  been advanced 
by P. Kokotovid /86/: 

(7.145) 

Bod e ,  H. W .  Network Analysis and Feedback Amplifier Design. - N. Y.. Van Nosuand. 1945. 

IL. 1963. 
** T t u x  a 1, J. G.-In: "Samoprisposahlivayushchie sistemy". Ch. 111. Translations from English. Moskva 
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where q is the pa rame te r  whose influence on system dynamics is being 
considered. 

In what follows we will descr ibe the application of the two definitions 
to par t icular  cases. 

1 .  Bode sensitivity .% in single-variable sys t ems  

Plant  cha rac t e r i s t i c s  can be al tered only by external disturbances.  
cha rac t e r i s t i c s  change in the resul t  of on-line interference f r o m  some of 
the plant pa rame te r s .  
plant p a r a m e t e r s  can vary between fair ly  wide l imits  in the course of 
the control process .  
sys t ems  is the degree of insensitivity of the t ransients  to the plant 
propert ies  o r ,  more  precisely,  to their  variation. 

sys t ems  with the above propert ies .  
the c lose r  is the system to an ideally adaptive one. 
a synthesis technique utilizing minimum- S$ s t ruc tu res  fo r  single-variable 
control systems.  

A s  we have already observed, the propert ies  of a system become 
progressively insensitive to changes in the controlled object a s  S",l';b, 
dec reases .  
is independent of W z ( p )  o r  S$sb,+O. 

The 

We are concerned he re  with sys t ems  where the 

An adaptation ( o r  self-adjustment) index of these 

We will apply the Bode sensitivity S$ to es t imate  the adaptivity of 
In fact ,  the sma l l e r  the sensitivity S$, 

At f i r s t  we consider 

F o r  this reason an ideal adaptive s t ructure  is such that S$:';b, 

r h '  H f l  

U 

FIGURE 7.26. An adaptive system. 

We now prove the following proposition: s t ruc tu res  with infinite-gain 
stability stabilized by near ly  ideal derivatives,  where the derivatives a r e  
"idealized" by adjusting the gain values, a r e  adaptive in the above sense.  
Indeed, consider a s t ructure  of this kind, shown in Figure 7.26. The 
closed-loop t r ans fe r  function is 
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The sensitivity (7.144) is thus given by 

Simplifying, we find 

(7.148) 

and 

We have obtained an ideal system in the sense  of the preceding. 

gain stability stabilized by passive stabil izers.  
Now consider  the expression for  sensitivity of sys t ems  with infinite- 

FIGURE 1.21. Structural equivalent of FIGURE 7.28. The use of an  ideal plant. 
Figure 7.26. 

A s  an example we take the simple case  of a sys tem shown in Figure 7.27. 
The closed-loop t ransfer  function is 

The sensitivity is given by 

At sufficiently high gain, we have in the l imit  

,im SK'P' - W 3 ( P )  , 

K + a ,  w*(p) - W A P )  + w, ( p )  

(7.149) 

(7.150) 

(7.1 51) 
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We see f r o m  (7.151) that even a t  fa i r ly  high gain, the sys tem dynamics 

Let  u s  now t ry  to improve on the stable s t ruc ture  so as to  minimize 
remains  sensi t ive to changes in plant pa rame te r s  o r  charac te r i s t ics .  

the pa rame te r  influence on sys tem dynamics and to make the sys t em 
ideally adaptive in the above sense.  

the adaptive sys tem can be conveniently synthesized with the aid of 
an  ideal, noisefree plant model. 
corresponding to  this case. 

A s  in  the case of external  dis turbances which defy measurement ,  

Figure 7.28 is a s t ruc tura l  d iagram 
Using the nomenclature of F igure  7.28, we wri te  

I (PI = KW, (P) IXin (P) - X out (P) - W, (P) Y(P) - 
- w, (P) w3 (P) [Xb"I (PI - XO", (dl  1. (7.1 52) 

Here  Xb., (p )  is the t ransform of the ideal output, X out ( p )  the t ransform of 
the r ea l  plant output. 
remain  constant. 

variation of plant charac te r i s t ics .  Hence, 

The ideal plant charac te r i s t ics  are assumed to 

The difference Xi., ( p ) - X o u t  ( p )  is thus equivalent to a disturbance due to 

xb.1 (P) - X',", (PI = cF (P)7 (7.153) 

where c is a constant. Thus, 

whence 

and solving fo r  XOut @)we wri te  

F o r  K+co we have 

(7.158) 

(7.159) 

We see f rom (7.159) that the output is insensitive to  changes in plant 
parameters .  
the sys tem will hold the optimum irrespect ive of changes in plant 
charac te r i s t ics .  

If W ; ( p )  is optimized (with respect  to some quality cr i ter ion) ,  
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2 .  Kokotovid sensit ivity S 

We deal  he re  with the same  cases  as in the preceding subsection, using 
the sensit ivity (7.145). 
is allowed to drift between wide l imits .  

The variable pa rame te r  is the plant gain, which 
The t ransfer  function of the plant is 

w2 ( p )  =Ko w; (A; (7.160) 

relation (7.146) is thus written as 

(7.161) 

We are concerned with sensit ivity in respec t  to re la t ive changes in 
plant gain, KO. We have 

Thus,  

lim S=O, 
K+CO 

(7.1 63) 

i. e., the s a m e  resul t  as before. If the sys tem is stabil ized by passive 
s tab i l izers  (real  der ivat ives) ,  the resu l t s  are a l so  the same  as those 
obtained with the Bode sensitivity. In this c l a s s  of s t ruc tures ,  Sk and S 
are equivalent in the sense  that they give identical resu l t s .  

can be formulated as follows. I n  o r d e r  f o r  t h e  s y s t e m  d y n a m i c s  
t o  b e  i n d e p e n d e n t  o f  c h a n g e s  i n  p a r a m e t e r s  o r  c h a r a c t e r -  
i s t i c s  o f  s o m e  e l e m e n t ,  t h e  c o n t r o l l e d  o b j e c t  i n c l u d e d ,  
i t  i s  n e c e s s a r y  t h a t  t h e  g a i n  of t h e  l o o p  w i t h  t h e  v a r i a b l e  
e l e m e n t  b e  s u f f i c i e n t l y  h i g h ,  It is implied that the ent i re  sys tem 
remains  s table  in the process .  A sys tem of this kind is real izable  if  i t s  
s t ruc ture  possesses  infinite-gain stability. 

We see f rom our  preceding t reatment  of sensit ivity in two s t ruc tu res  
with infinite-gain stabil i ty that, in the second case, increase  of gain failed 
to produce sufficiently low sensit ivity without the incorporation of an  ideal 
noisefree plant. 
loop with the var iable  element. 

application of the two techniques. This  will enable u s  to dispense with the 
ideal  plant in the network. A s  an i l lustration, le t  u s  consider  the case of 
a s t ruc ture  which is stabil ized by ordinary passive elements .  
in  F igure  7.26 is modified as follows (F igure  7.29): a high-gain amplif ier  
is connected in series with the var iab le-parameter  plant. 
t r ans fe r  function fo r  F igure  7.29 is 

The principal s t ruc tura l  conclusion that follows f rom the preceding 

This was so because we did not increase  the gain of the 

In pract ice ,  low-sensitivity sys t ems  can be synthesized by a simultaneous 

The s t ruc tu re  

The closed-loop 

(7 .1 64) 
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and 

lim s$&=o, 
K+CC 

i. e., we have obtained a system with z e r o  sensitivity. 

(7.1 65) 

FIGURE 7.29. An adaptive system. 

It r ema ins  to  be shown, however, that the system is stable as  K+m. 
Let the t r ans fe r  functions of the system elements  be 

The character is t ic  equation is obtained by putting the determinant of 
(7.164) equal to zero,  thus: 

(7 .166)  

1 Dividing (7.166) through by K 2  and puttingK=m, we obtain a f t e r  simple 

manipulations 

The difference in the degrees  of the f i r s t  two polynomials is q+m - r - n ,  

Since the s t ructure  in Figure 7.28 has  infinite-gain stability, 
where q, m, r ,  and n are the respective degrees  of the polynomials Q, F,, R ,  
and F,. 
we may write 

q+m - r -n  ,< 2. 

Now consider the difference v in the degrees  of the l a s t  two polynomials. 
If d is the degree of D ( p ) ,  we have 

v = n + d - m .  

Since n - m has  been determined f rom the s t ructure  in Figure 7.28, 
everything depends on the value of d ,  which is the degree of the denominator 
of the plant operator.  
s t ructure  in Figure 7.29 without any additional means.  If, however, d>2 ,  
the inequality 

If d < 2 ,  z e r o  sensitivity can be attained for  the 
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must  be satisfied. This can be done by a simultaneous application of the 
f i r s t  and second methods of synthesis of previously discussed s t ruc tu res  
which are stable fo r  K+m. 

with nonlinearities of a certain kind. We have also emphasized that an 
infinite gain is realizable with a sliding-action relay system. 
can a l so  be obtained with the aid of a sliding-action system of variable 
s t ruc tu re  181. 

At the end of this chapter we will show by considering a number of 
examples that ou r  conclusions concerning zero-sensit ivity s t ruc tu res  can 
be extended to plants with variable pa rame te r s  as well. 

And now a few words on multivariable control systems.  
a system is regarded as ideal o r  adaptive if  the control dynamics are not 
overly influenced by the variation of plant character is t ics .  
between the controlled var iables  obviously affects the dynamics in each 
control loop i r respect ive of whether the particular controlled variable is 
sensit ive to variation of plant cha rac t e r i s t i c s  in the other var iables  or not. 
For  this reason, system optimization in this ca se  automatically involves 
noninteraction. 
is no single extremum for  the ent i re  system, noninteraction is the most  
desirable operating mode. 

We have already shown how to achieve infinite-gain stability .in sys t ems  

Infinite gain 

In this section 

Feedback 

If each controlled variable h a s  i t s  own extremum, and the re  

5 7 . 1 3 .  SYSTEMS CONTAINING ELEMENTS 
WITH VARIABLE PARAMETERS 

The pa rame te r s  of many elements  vary with t ime. Systems containing 
such variable elements are called s y s t e m s  w i t h  v a r i a b l e  p a r a -  
m e t  e r s .  The t ime variation of the pa rame te r s  may be quite a rb i t r a ry .  
F o r  example, the self-inductance and the mutual inductance of synchronous 
machines with prominent poles a r e  sine functions. In general ,  t ime 
variation of the pa rame te r  is not always known. 
variable pa rame te r  is included in a control system, the variation can be 
interpreted a s  internal parametr ic  noise, an obviously undesirable effect. 
We thus again a r r i v e  a t  a problem of sensitivity: find a s t ructure  such 
that time variation of a pa rame te r  does not influence the dynamic 
propert ies  of the system a s  a whole or ,  alternatively, find a s t ructure  
whose dynamic propert ies  a r e  insensitive to time variation of the pa rame te r s  
of individual elements.  

by a f i r s t -o rde r  l inear differential equation with variable pa rame te r s ,  
specifically : 

If an element with a 

Consider the following example. Let the controlled object be described 

(7 .1 68) 

Here  a ( t )  and b ( t )  are time-variable coefficients, yOut, a controlled variable,  
x the controller input. 

We will make use of the previous r e su l t s  obtained for  l inear  sys t ems  
with constant parameters .  

Our task is to maintain y;,, (constant. 

Figure 7.30  is a s t ructural  diagram of a system 
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that maintains the output yoyI constant, changing i t  only if y r e r i s  changed. 

We put z = p .  0 Then (7.168) is written d 

The equation of the system shown in Figure 7.30 is written a s  follows. 
For the section with constant coefficients we have 

(7.170) 

and the element with variable parameters  is described by (7.169). 
ing x ( t )  and differentiating, we find 

El iminat-  

(4 P' + Tpa (0 P -I- Tb (4 p + Tpb ( 4  + a ( t )  p + b (41 y out ( 4  + 
+Kla(Op+b (41 Y out ( O f  K2(1 + Tp)y,,, (4 = 

= K 2  (1 + TP)  &f (0. (7.171) 

(7.172) 

We have automatically obtained an ideal response,  provided that the 
gain can be made arb i t ra r i ly  large.  
case  is the requirement of continuity of the time-dependent coefficients. 
The absolute values of p b ( f )  and p n ( f )  a r e  thus finite. This  res t r ic t ion on 
the variation of the coefficients enables us to introduce fur ther  simplifica- 
tions and to elucidate in g rea t e r  detail the dynamic propert ies  of the sys tem.  

The only restr ic t ion imposed in this 

FIGURE 7.30. A plant with variable parameters. 

Indeed, introduction of high-gain amplif iers ,  one of which is embraced 
by an aperiodic element, ensures  fas te r  and more faithful reproduction 
of the reference signal a s  the gain is increased,  so that for  sufficiently 
high gain values the coefficients a ( t )  and b( f )  can be regarded a s  slowly 
varying. In a sense we end up with a network which is equivalent to a 

Do not confuse this operator p with the complex number in Laplace transformation. 
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l inear  s t ructure  with constant coefficients. 
remain stable a t  infinite gain. 

The s t ructure  chosen should 
The degenerate equation then takes the f o r m  

IT + m7)l p + 1 +m) m = 0, (7.173) 

where a(r) and b(f) a r e  constant fo r  the duration of the transient.  If v) 
and b(t) may take on negative values, i t  is necessa ry  f o r  the stability of 
the degenerate equation that m a m  <T and mb(t) <1, which is always feasible 
by making an appropirate gain adjustment. 

The additional condition in this case has  the form 

(7.174) 

W e  see  f rom (7.174) that the coefficient a ( t )  must  not be negative; 

We have thus proved that a virtually ideal response is attainable in this 
otherwise the sys tem is unstable. 

c l a s s  of s t ruc tu res  in the presence of elements with t ime-variable pa ra -  
me te r s .  In other words, we have obtained a s t ructure  which is insensitive 
to the influence of time -variable pa rame te r s .  

The above r e su l t s  can be readily generalized to the case  of a controlled 
object described by an n-th o rde r  equation with variable parameters .  

If n i s  the o r d e r  of the equation describing the variable element, there  
is in general  n + 2  variable parameters ,  and a dynamically insensitive 
s t ructure  is generated by connecting n amplif iers  of sufficiently high gain 
in s e r i e s  with the variable elements.  

stabilized by feedback e lements  of the type - ‘ The sys tem is tested 
1+TP’ 

fo r  stability assuming relatively slow variation of the coefficients. 
The sys tem is realizable i f  the degenerate and the auxiliary equation 

each satisfy the stability conditions. The number of amplif iers  may be 
reduced to n / 2  + 1 if each amplifier is stabilized by a device with a t r ans fe r  

1 function ~~ 

UP?+ bP+ 1 

In practice,  i t  is more  advisable to use  n amplifiers fo r  the following 
reasons.  F i r s t ,  the amplif iers  themselves have a certain,  albeit small ,  

inertia,  and this  may limit  the gain i f  ap2w ’ stabi l izers  a r e  used, 

while ___ amplif iers  a r e  virtually unaffected by this property.  

i l lustration, F igure  7.31 gives a specimen s t ructure  f o r  the case  of a 
plant described by a four th-order  differential equation with variable 
parameters .  

The point is, that the effect of the variable pa rame te r s  on sys t em dynamics 
is suppressed by the gain of the unstabilized amplifier.  
other amplifiers,  they produce the derivative action requi red  f o r  purposes 
of stabilization (it a l so  e n s u r e s  accurate  and fast  response).  

n amplif iers  with s tabi l izers  of the type 1 

Of these, a - 1  amplif iers  a r e  

This produces an auxiliary equation of the third kind. 

As an  
TP+ 1 

One highly important property of these s t ruc tu res  sbould be s t r e s sed .  

A s  r ega rds  the 

If there  a r e  

all derivatives f rom n-th 
T P + ~  ’ 

If the time rate of parameter variation cannot be ignored, the stability should be investigated by the 
method of V. M. Popov. 
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to f i r s t  are produced; the higher the gain values,  the c lose r  are these 
derivatives to the ideal.  
gain amplif ier  and a s tabi l izer  is' c lose to unity. This is highly significant 
f o r  noisy systems.  

But the gain of a closed loop comprising a high- 

>> 

7 7 7 
7 7 7  7- ?3 

>> 

7 7 7 

I -- J 

FIGURE7.31. A more general case of a plant w i t h  variable parameters. 

High gain is attained with the aid of sliding-action relay sys t ems  1711 
or variable-s t ructure  systems,  a lso operating in the sliding mode 181 .  

In conclusion a few words on the potential of the sys t ems  discussed. 
F r o m  the aspect  of classification of optimum control sys t ems  ( e .  g., 

1. 
according to Draper  and Lee),  we have to consider two cases .  

The plant cha rac t e r i s t i c s  and the input -output functional dependence 
a r e  well known. One input is adopted as  the p r imary  reference for  control 
purposes,  and al l  other  inputs a r e  generated by a programmed device 
which optimizes the system in accordance with the given input-output 
relationships.  This system will function successfully in the noisefree 
case  or if noise is suppressable.  

The plant character is t ic  is not known. We only know that i t  h a s  
an extremum, which can be located by one of the searching techniques. 
F i r s t ,  the cha rac t e r i s t i c s  of the searching signal should be optimized in 
t e r m s  of gain and frequency; second, the output searching lo s ses  are 
minimized ( th i s  is the difference between the optimum value and the 
effective steady- state output) ; third, the t ime -to-optimum is minimized, 
and las t ,  the realizability of a system which only r equ i r e s  occasional 
s ea rch  is established. 

curve in Figure 7.32. 
character is t ic  is satisfactorily approximated by a parabola 

2. 

Let u s  consider the case  of a plant character is t ic  represented by the 
F o r  small  deviations f rom the extremum, the 

y = Kx2. (7.175) 

This par t icular  assumption does not detract  f rom the generali ty of ou r  
conclusions. It should be s t r e s sed ,  however, that the assumption expressed 
by equation (7.175) is physically meaningful. 
w e  are interested 
and steady-state accuracy. 

is t ics  a r e  injected directly into the plant and that they can be measured.  

It implies  that the s t ruc tu res  
a r e  potentially capable of ensuring very high t ransient  

Assumption (7.1 75) is thus fully justified. 
In § 7.5 we have assumed that the noises altering the plant character-  
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In this c a s e  neither continuous nor  periodic sea rch  is required.  It 
suffices to find once and for  all the optimizing pa rame te r s ,  and the 
sys t em is then synthesized as a combined control system along the l ines 

described in Chapter Five.  In reali ty,  however, 
even if the relevant noise is delivered to the plant 
input, we cannot be s u r e  that some other  disturbance 
will not cause the output to drift  f rom the optimum; 
the probability of this dr i f t  is the same whether the 
input is decreased o r  increased.  
we readily see that dr i f t  due to  a dec rease  of the 
input substantially a l t e r s  the propert ies  of the ent i re  
system, since the plant character is t ic  is unstable 
under these conditions and al l  the calculations should 

F o r  the system to retain the same  s t ructure  in all 
be ca r r i ed  out keeping this instability in mind. 

operating modes, a combined-action system should 
be built, where the controllable deviations a r e  no 

Y 

Making use  of (7.175), 

z i 
F1GURE7.32. A Plant  
characteristic. 

longer the deviations of the output f rom the reference value but the deviations 

of %f rom zero.  
d y  I" 

It is significant, however, that the proposed fixed-structure sys t ems  a r e  
essentially different f rom ordinary searching sys t ems  in the following 
par t iculars  . 

chosen s o  that the searching region and the output searching lo s s  a r e  
minimized, 

controlled variable has  departed f rom the optimum by more  than a p re se t  
permissible  value. 

holding sys t ems  with periodic search.  

1. Since the main noise i s  suppressed, the search cha rac t e r i s t i c s  a r e  

2 .  Periodic search is quite sufficient. i t  is turned on only when the 

3 .  A successful synthesis technique cal ls  f o r  a combination of extremum- 

57 .14 .  
STRUCTURE CONTROL SYSTEM WITH SELF- 

SPECIMEN CALCULATION O F  A FIXED- 

ADAPTIVE PROPERTIES 

The example discussed in this section is borrowed f rom R .  J .  Kochen- 

Figure 7 . 3 3  is a block diagram of Kochenburger 's  system (the symbols 
The problem is 

bu rge r ' s  paper presented a t  the IFAC Second Congress .  

have been al tered to conform with the usage in this book. 
to maintain the controlled variable y constant and equal to the reference 

value yrer. 

paramete r s  of the operator  D ( p )  remain s t r ic t ly  constant, while the gain K 
var i e s  between wide l imits.  
by a factor  of 100 : 1 ,  and i t  is this  gain variation that provides the main 
disturbance . 

x The t ransfer  function of the controlled object is-. D ( p )  ' the 

In Kochenburger 's  system the gain va r i e s  
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The author rightly s t r e s s e s  that h i s  solution is considerably s imple r  
than the conventional solutions, where complex calculators are used to 
perform the sea rch .  
tained constant (p is the control ler  gain). 
measuring the change in K an another element which a l t e r s  p appropriately,  
so  that pK=const. 

In Kochenburger 's  solution the product p K  is main- 
Therefore,  there  is a n  element 

I I 

FIGURE 7.33. Kochenburger's system. 

x?+-=-@- Jlpl 

FIGURE 1.34. An element  of Kochenburger's system. 

1 
G f  (P) 

FIGURE 7.35. The  oscillatory circuit in  Kochenburger's system. 

Kochenburger's control scheme, however, is fair ly  complicated. This 
will become the more obvious once the same  problem is solved by using 
the methods of this chapter.  

convenient representation of the original system is proposed. 
pa rame te r s  of D ( p )  are constant and only K is variable and since the controller 
operator  K ( p )  is also constant and only the controller gain p is al tered,  
D ( p ) ,  R ( p ) ,  K, and p a r e  represented by separate  elements,  a s  is shown in 
Figure 7.34,  where the output signal of R ( p ) i s  delivered to the input of 
the element with controlled p. 
loop which ensu res  the appropriate variation in p .  This circuit  u s e s  a 
very-high-gain amplifier with a l imiter  and a l inear  feedback element 
G , ( p ) .  
feedback arrangement ,  not shown in the figure. 'The amplifier cha rac t e r -  
is t ic  thus h a s  a l inear  section limited between Y,=&L. The f i l ter  of 
the feedback element Gf(p) is so chosen that high freqdency sustained 
oscil lations are excited in the circui t  fo r  a l l  values of the plant gain K. 
These oscil lations provide the sampling signals in the auxiliary circuit .  

FirSt  we briefly review Kochenburger' s original solution. The following 
Since the 

Figure 7.35 shows an auxiliary feedback 

The output signal of the high-gain amplifier is l imited by a special  
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The angular frequency md of the oscillations should be sufficiently high, 
so  that the amplitude of the oscillations a t  the output of the plant (which 
a c t s  as the filter) is negligible, 

The charac te r i s t ic  of the limiting high-gain amplif ier  is so chosen that 
when no input signal x is delivered, the amplifier has  a ze ro  average output. 

Now suppose that x takes  on a cer ta in  constant (say, positive) value. 
The output of the high-gain amplifier is biased and the average value is no 
longer zero .  
be near ly  proportional to each other, i. e., Y , s p x .  If the signal x is 
constant, the gain p is proportional to the mean value of the constant 
output component of the high-gain amplifier. 

Kochenburger has  shown that the proportionality coefficient va r i e s  
approximately in inverse proportion to K. 
for  the var iable  gain p is thus obtained. It is moreover  shown that the 
r e su l t s  a r e  a l so  valid for  a slowly varying x .  
gain p in proportion to Y,, so that p K G  const. 

If a, L ,  and G , ( p )  a r e  appropriately chosen, Yr and x will 

The sought functional dependence 

It now remains  to vary  the 

This  method is applied to synthesize the circuit  shown in Figure 7.36 fo r  

K 
@) = (1 + 0.2~)’ (1 + 0.005~) (7.176) 

and K varying by a factor  of 1:lOO. 

I I 

FIGURE 7.36. General configuration of Kochenburger‘s system. 

We now solve the same problem by using the methods of this chapter. 
The problem is stated as follows. 
a searching element) which maintains the controlled variable Y constant 
while the plant gain var ies  in a ratio of 100 : 1, the plant t ransferfunct ionbeing 

Find a fixed-structure system (without 

K 
(p )  = (1 + 0 . 2 ~ ) ’  (1 + 0.005~) (7.177) 

( a  different range of gain variation may of course be assumed).  

s e r i e s  with the controlled object. 

by feedback elements  TlpS.l and 

system takes the form shown in Figure 7.37. 

Three  l inear  amplif iers  with a sufficiently high gain a r e  connected in 
Two of these amplif iers  a r e  controlled 

respecti-sly. ‘rhe en t i re  control I 
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We proceed to determine the system transfer  function. Using the 
nomenclature of Figure 7 .37 ,  we write 

K h  K h  K 
Kh Kh (1 + 0.2p)Z (1 + 0 . 0 0 5 ~ )  

._ 

Kh K 
K h  K h  K h  (1 + 0.2p)z (l-+ 0.005~) l+-l+-  TIP ~ + T , P  

and a f t e r  elementary manipulations 

1 
K h  

Dividing the numerator  and the denominator by KE and putting - = m, 

we write 

(7.179) 

In other words, we succeeded in compensating the gain variation and 
incidentally obtained a high-quality control system. 
r e su l t s  to be realizable,  the system should be tested for stability as m+ 0 .  

In o r d e r  fo r  the 

7 
~ 

7 
f + T l p p p ~ 7 + 7 2 ~  ~ __ - - 

FIGURE 7.37. Illustrating the solution of Kochenburger's probleni. 

The character is t ic  equation is obtained by putting the determinant of 
(7.179) equal to zero,  thus: 

m3(1 +T,p)(l +T,p)(l +0.2p)'(I +0.005p)+ + mz IVl + T,) p + 21 (1 + 0 . 2 ~ ) ~  (1 t 0.005~) + 
+ m ( l  +0.2p)'(1 +0.005p)+K(I + T , p ) ( l  + T,p)=0. (7.181) 



The degree of any two successive polynomials dec reases  by one, and we 
thus have an auxiliary equation of the f i r s t  kind. 
w e  obtain the auxiliary equations in explicit form: 

After some manipulations, 

0 . 0 0 0 2 ~ ~ ~ ~ ~ 3  + 0.0002 ( T ,  + T,) q 2 +  0.0002q + KT,T, = 0. (7.182) 

The coefficients of this  equation should satisfy Hurwitz' c r i t e r i a .  
constraint  imposed on K is 

The 

K <  O ~ ( T I f T 2 )  (7.183) 
T 2 T  ' 

Hence we can readily choose the t ime constants that ensu re  stability in the 
ent i re  range of gain variation; thus, for  T 1 = T 2 =  0.01, we have K<400. 
In other words,  the gain may take on any value f rom z e r o  to 400. 

Kochenburger is concerned with the case  of a system which can accommo- 
date a gain increase by a factor  of 100 : 1. 
wider than that. The degenerate equation 

Our  stability range is much 

always sat isf ies  Hurwitz' conditions. 
and t3, relation (7.183) takes the fo rm 

If the plant t ime constants a r e  T,, TZ, 

(7.184) 

In conclusion the re  i s  one other problem to be considered, In Kochen- 
b u r g e r ' s  paper it is assumed that the rate  of gain variation may  be com-  
parable with the t ime r a t e  of t ransients  in the system. It is c l e a r  f rom 
o u r  resul t  (equation (7.180)) that fo r  sufficiently high gain the t ransients  
a r e  very short-l ived and no additional t e s t s  a r e  required.  However, 
if the gain i s  such that the t ransient  t ime constant in the sys t em is 
comparable with the t ime r a t e  of variation in K ,  the solution i s  valid 
only if the system is additionally tested for  absolute stabil i ty in the 
given 

tested using a model. 
i. e., the same  values as in Kochenburger 's  paper. 
constants w e r e  T I = T 2 =  0.01 and the plant gain varied f rom K,I,= 0.1 to 
Kmax= 10. The amplif ier  gain was Kh= 200. 

is the oscil logram for  K =  0.1. 
with a sine-law gain K varying a t  a frequency a d =  1 cps .  

range. This  tes t  canbe  readily made using V. M. Popov's method /I/. 

The plant t ime constants were T ~ =  0.2 and r3= 0.005, 
The theoretical  performance of the system shown in Figure 7.37 was 

The s tabi l izer  t ime 

Figure 7.38 is an oscil logram of the process  for  K =  10 and Figure 7.39 
Figure 7.40 is an osci l logram of a system 

In all c a s e s  Y,ef= 1. 

FIGURE 7.38. Oscillogram for I(= 10. 
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FIGURE 7.39. Oscillogram for K= 0.1. 

FIGURE 7.40. Oscillogram forK= 5- 4 sin 6.28 f. 

W e  see  f rom these oscil lograms that: 
1. The steady-state value of the controlled variable is the same  in a l l  

c a s e s ,  i. e., the system indeed maintains the controlled variable independent 
of the plant gain and its variation, 

obviously satisfactory resul t .  
2. The transient is virtually the same in a l l  the three cases ,  an 

1 
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Chapter Eight 

VARIATIONAL ASPECTS OF MULTIVARIABLE CONTROL 

8.1. MULTIVARIABLE CONTROL AS A 
VARIATIONAL PROBLEM 

W e  have noted before that multivariable control sys tems can be divided 
into two c lasses  with fundamentally different optimization behavior. Since 
this division is of the utmost significance fo r  cor rec t  choice of optimality 
tes t s  and efficient design of control systems,  we will go into this problem 
in some more  detail. 

rolling mi l l s  and found that the quality of the meta l  depended on the 
precis ion with which a number of parameters  were  controlled, e.g., 
main drive speed, roll  position, etc. However, improvement of the 
dynamics of each individual controlled var iable  does not necessar i ly  mean 
that the system a s  a whole is optimized. 
control of the individual var iables  is aimed from the very  s t a r t  a t  the 
principal target, namely achieving the necessary  geometrical  dimensions 
of the rolled strip.  

Another example is provided by oil reservoi rs ,  which were considered 
in Chapter One a s  an object of multivariable control. Efficient exploitation 
of the field, in the sense  prescr ibed by our  problem, i s  attaining maximum 
output ( in  the limit, draining the r e se rvo i r  of a l l  i t s  oil) in the shortest  
possible t ime and a t  the lowest possible cost. Constant field operating 
conditions a r e  maintained by sinking additional injection wells through 
which water  i s  driven into the s t ra ta ,  and the field parameters  can be 
regulates by adjusting the working conditions of these injection wells. 
Field exploitation, however, is fur ther  constrained by the large-  scale  
requirements  of national oil industry. In principle, oil fields can be 
worked in a multitude of different ways, while in pract ice  the output is 
limited by the capacity of the equipment. Now, even if the equipment 
limitations have been allowed for, we a r e  s t i l l  left with a var ie ty  of well 
exploitation conditions and i t  is our job to se lec t  the optimal alternative. 

The oil-and-water-bearing s t r a t a  in conjunction with the well constitute 
a single hydrodynamical system. If the outputs of some of the wells a r e  
a l tered,  p re s su res  and flow pat terns  in the en t i re  field a r e  affected. 
example, enhanced exploitation of a number of wells only, with continued 
injection of water, will eventually lower the s t r a t a l  p ressure ,  and many 
wells may  stop producing; moreover ,  formation water  may  penetrate into 
the region of reduced pressure ,  and some wells will be prematurely flooded. 

In Chapter One we analyzed the problem of s t r i p  gage control in hot 

Optimizing is attainable if  the 

For 

239 



Well depletion and flooding r a i s e  the cost  of field exploitation. It is 
c l ea r ,  therefore,  that the well operating conditions should be chosen with 
due consideration to  economic factors ,  

the formation p res su re  distribution comply with the desirable working 
conditions and, in particular,  the possibility of natural  flow. This  of 
course imposes additional res t r ic t ions on oil  field exploitation, and it is 
by no means  cer ta in  that the resul t  is the optimum. 
r e a l  oil r e se rvo i r  is inhomogeneous in i t s  physical and chemical properties,  
so  that each well has  a different potential. Moreover, s tar t ing a t  a cer ta in  
stage of oil field exploitation, the wells a r e  a l l  flooded in varying degrees.  
The flooding is generally m o r e  pronounced in wells with high production 
rates .  I t  should therefore be understood that driving a well a t  a maximum 
ra t e  of production m a y  eventually lower the output and increase the produc- 
tion costs  for  the field. 
be "suppressed" (o r  even discontinued entirely),  so that the total oil  output 
i nc reases  markedly.  We a r e  thus clear ly  faced with a variational problem 
of optimizing the oil production conditions under a given se t  of constraints,  

In the two cases  above, multivariable control provides an adequate 
solution of the problem, and each individual variable should be controlled 
in such a w a y a s  to e x t r e m i z e  some g e n e r a l i z e d  q u a l i t y  i n d e x  
of the system a s  a whole. 
solution of the problem in application to the s implest  ca se  of oil field 
exploitation. 

The other c l a s s  
includes multivariable control sys t ems  which a r e  optimized by optimizing 
eve ry  individual controlled variable. We will show in the following that 
i n  this case  also the control equation is obtained by solving a variational 
problem. 

One of the fundamental requirements  in planning the well pat tern is that 

The point is, that the 

On the other hand, hopelessly flooded wells can 

In this chapter we will consider the detailed 

All  the preceding r e f e r s  to sys t ems  of one class .  

5 8.2.  APPLICATION O F  LINEAR PROGMMMING 

The l inear  programming (LP) problem can be stated a s  follows: find 
a vector y ( y l ,  . . . .  y n )  maximizing (minimizing) the l inear  form 

where the var iables  sat isfy the l inear  constraints 

Yj>O ( j=1 ,  2, * .  ., n) 

+ a l " Y n  = 61, 

f a / z Y ,  + . . .  +a j iY j  + . . .  t a j ~ n  =bjy 

%IYI + a m ~ Y 2  + ... + amiYi + .. .  + amngn = b,, 

and 
a l l y l  + alzYz + . ' . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . .  

where aij, b i ,  and ci are known constants and m<n. 
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In ma t r ix  form the general  L P  problem is writ ten a s  follows: maximize 
(minimize) 

CY (8.4) 

Y > O ,  A Y = b .  (8.5) 

subject t o  the condition 

Here  C is a row matrix,  Y a column matr ix ,  A=[aij]a m x n  matrix,  B a 
column matr ix .  

In Chapter One we derived a se t  of algebraic equations which, under 
cer ta in  conditions, approximately descr ibe the behavior of an oil  field. 
These equations a r e  based on the assumption of l inear  seepage (Darcy ' s  
l inear  law of filtration) and rigid operating conditions. The relation 
between debit and p r e s s u r e  in a well is given by the expression (see 
Chapter  One) 

AQ = AP, (8.6) 

where A is a regular  rnxn matrix,  Q and AI' a r e  n-component column 
ma t r i ces .  The elements of the ma t r ix  A a r e  found from the relations 

For n producing wells the matr ix  equation (8.6)  is a set  of r z  l inear ly  
independent equations which for  Qj 2 0  define the boundary of a closed 
convex polyhedron. If Pi and Qi a r e  varied,  the hodograph of the vector 
Qi will f i l l  a cer ta in  domain containing all the points of the convex set .  
The  ma t r ix  equation (8.6) in this  ca se  may  be clear ly  given by  the inequality 

A Q  SAP 

or ,  alternatively, 

( i = l ,  2, . . . ,  n). 
The preceding discussion also has  a vivid geometr ical  interpretation. 

A s  an example, consider production from two wells. 
the form 

Relations (8.8) take 

Here p denotes the producing well, k the p r e s s u r e  on the field boundary; 
Pi,z is the well p re s su re .  
OABC (F igu re  8.1). which is obtained in the following way. 
Q I > O  and Q2>0. We a r e  thus concerned only with the f i r s t  quadrant of the 
QI,Qz plane, limited byQ,=O and Qz=O. 

Geometrically (8.9) desc r ibes  a convexquadrangle 
F i r s t  put 

Now consider where the f i r s t  inequality of (8.9) reduces t o  an equality, 

aiiQ!+ ai2Q?P= P* - Pl". (8.10) 
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The half-plane containing al l  the solutions of inequality (8.9) (the f i r s t  
inequality) is located below and to the left of the line (8.10). 
of this line is 

The equation 

The intercept of this line on the QZ axis  is 

Pa - Pp 

4 2  

(8.11) 

(8.12) 

and i t s  intercept on the Q, axis  is 

Pa - Pp 
1111 

(8.1 3) 

The second line i s  constructed in the same way. We thus delineate 
a region where expression (8.6) holds true.  

FIGURE 8.1. Illustrating the linear 
programming problem. 

Now consider the l inear  form 

21 = Q I  + 42. (8.14) 

which gives the total output (water  and oil) of the two wells. 
maximize the total output. 
F o r  par t icular  values of u expression (8.14) descr ibes  a family of s t ra ight  
l ines which a r e  marked in Figure 8.1 a s  XY. 
point Qla,Qzowhere the line XY is tangent to the convex quadrangle (point B in 
F igure  8.1). 
well 2 produces Qx,. 
those imposed by the inherent propert ies  of the oil reservoi r .  
follows we call  these constraints  the technological constraints  of the 
variational problem. 

control sys tems described by l inear  algebraic equations with a generalized 
quality cr i ter ion,  which is a l inear  form in the controlled var iables .  

Let u s  
This  i s  best done by a geometrical  construction. 

The maximum is attained at the 

The output i s  thus maximum when well 1 produces Qlo and 
This  resu l t  holds t rue if the only constraints  a r e  

In what 

Linear  programming is thus applicable to optimizing multivariable 
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§ 8.3. THE PROBLEM OF OPTIMUM OIL- 
FIELD EXPLOITATION 

The applicability of l inear  programming to oil production optimizing 
Let us  now w a s  i l lustrated fo r  the simple case of two producing wells. 

consider a m o r e  general  case  often encountered in practice. 

parameters  to be constrained a r e  the permissible  and the maximum 
formation and well p ressures .  
s ider ing the permissible  and the maximum well p re s su res .  The various 
requirements  of the production schedule for  the different par t s  of the field 
and the redistribution of flow s t r eams  needed to control formation water  
circulation can be satisfied by forming l inear  combinations of some 
components A P i .  

However, optimum production schedule depends not only on the inter-  
relationship between wells and the maximum pres su res  in production and 
injection lines. 
limited capacity of equipment: 

We have already discussed some technological constraints. The main 

In practice AP can be a r r ived  at by con- 

Another c l a s s  of res t r ic t ions a r e  connected with the 

T Q j S Q  ( i=m ..., 0. (8.15) 

In what follows constraints  (8.15) wi l l  be regarded a s  the production 
constraints  of the variational problem. Relations (8.15) correspond, e.g., 
to pumping restr ic t ions associated with the productivity of water-disposal 
equipment or intermediate water-pumping stations. 
m a y  represent  production restr ic t ions because of insufficient through 
capacity of demulsifying plants, s torage pools, gravity-flow and head-flow 
col lectors .  

of economic constraints  a r e  associated with capital outlay. 
optimizing it is assumed that the plant (Le., the number of wells and the 
well pattern) is given. 
a s  constant during a cer ta in  period of time. 
change, the economic constraints  a r e  ignored a t  this stage. 

The choice of the optimum well pattern is a complicated problem of 
independent interest ,  and we wi l l  not go into i t  here .  

Consider the field exploitation charges, which can be i temized a s  a 
function of well outputs. The power requirements  can be written a s  a 
l inear  function of the outputs, thus: 

Similar  inequalities 

There  a r e  a lso res t r ic t ions  of purely economic charac te r .  The majority 
In well 

The capital investment may  therefore  be regarded 
Since the investment does not 

(8.16) 

where bj a r e  the charge coefficients, N the power restr ic t ions.  
Production planning c r i t e r i a  impose additional constraints of the form 

(8.17) 

where Ci is the  proportion of oil  in the fluid lifted from the i-th well, 
Q, the oil  production target.  

The variational problem cannow be stated in two alternative forms: 
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(1) Find well operating conditions ensuring maximum total  oi l  output 

(2) Find well operating conditions ensuring minimum production cost  

In principle, the two s ta tements  a r e  identical. 

under given technological, production, and economic constraints.  

f o r  the planned output under given technological and production constraints.  
Therefore,  without l o s s  

of generality, we will only consider the problem of maximum total  output 
under  given constraints,  where the functional ( the object function) is writ ten 
in the form 

The s e t  of equations specifying the technological constraints a r e  thus 
If combined with expressions f o r  production and economic constraints.  

the combined constraint  ma t r ix  is designated K i j ,  we a r r i v e  a t  the following 
statement of the variational problem: 

Optimize 

given 

and 

CiQi (8.19) 

(8.20) 

(8.21) 

Here [I Kij 11 is a rectangular m x n  mat r ix  with m>n; I1 r 11 is the m-component 
constraint  vector (column matrix). 

It is defined a s  the proportion of 
oil  in the pumped fluid: C i = l  indicates that the well produces pure oil, 
whereas C,=O means that the fluid contains no oil altogether ( a s  is the case 
in injection wells, say). 

A few words about the coefficient Ci.  

§ 8.4. A NUMERICAL EXAMPLE 

The theory of the preceding section can b e  i l lustrated by a numerical  
example. 
they a r e  nevertheless typical. 
shows the well pattern and the formation boundaries; the numerical  values 
of the hydraulic res is tance a r e  a lso given. 
to write the equation of l inear  seepage. The f igures  were obtained from 
(8.7) using a grid model. 

Wells 1 and 6 are injection wells, so that C, and C, a r e  both zero (the 
fluid is pure water) .  Wells 2, 3,4, 5 are producing wells with mechanical 
sucker-  rod pumping, e lectr ical  centrifugal pumping, natural  flow, and 
hydraulic long-stroke pumping, respectively. The proportion of oil in the 
fluid lifted from these wells is respectively 0.4, 0.9, 1 ,  andO.l. 

The maximum output differs f rom well to well depending on productivity 
coefficients, formation and well p re s su res ,  and a l so  the layout of auxiliary 

The data below do not apply to  any par t icular  r e se rvo i r ,  but 
Consider a s ec to r  with s ix  wells. Figure 8.2 

This  information is sufficient 
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TABLE 8.1 

1 

2 

3 

4 

5 

6 

I 

8 

9 

10 

~ 

Specifications 

Injcction well pressure not to ex- 
ceed the allowed maximum of 
the equipment 

Producing well pressure not below 
a certain limiting figure 

To  ensure stable natural flow, rhe 
dynamic formation pressure for 
well 4 not to be less than a 
certain limiting figure 

To prevent gas invasion, the 
dynamic formation pressure for 
well 3 not to be less than satura- 
tion pressure 

well 4, the water tongue in  the 
dangerous direction 3-4 should 
be tied to  well 3 

Siphon output and secondary re- 
covery water pump output not to 
exceed certain limiting figures 

Through capacity of the well 3-to- 
well 4 gravity-flow collector not 
to  exceed a certain limiting 
figure 

Demulsifying plant productivity not 
to  exceed a certain limitingfigure 

Product released from storage pool 
to meet  certain qualitystandards 

Power requirements not to exceed 
a prescribed figure 

To  avoid premature flooding of 

Constraints 

PI < [PI1 

QJ > Q, 

Justification 

Direct experiment with the water pumps 
connected to one of the wells 

Calculations based on pump stroke 
length and minimum self-flowing 
pressures 

Calculations based on i tem 2 under 
given output restriction 

The equipment will lift a t  well 
pressures below saturation pressure 

Analysis of depression regions on the 
grid model 

Direct experiment 

Calculations and direct experiment 

Direct experiment and statistical 

Consumer requirements 
data 

The  statistical dependence N = N ( Q )  
is derived empirically 

.- 
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s torage  and processing installations. 
and the communication l ines.  
tion, and economic constraints  a r e  all known. 
is listed in Table 8.1. 

F igure  8.3  shows the general  layout 
It is assumed that the technological, produc- 

The relevant information 

FIGURE 8.2. Oil reservoir data. 

1820 

FIGURE 8.3. Layout of oil-field installations. 
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The problem is t o  find well operating conditions that ensu re  maximum 
oi l  production under the given constraints.  
numerical  data, we formulate the following mathematical  problem. 

Using Table 8.1 and the 

--006006 
006 --009 
010 -012 
011 -012 
181 -011 

-011 043 
100 000 
010 -008 
011 -012 
ooo 100 
o o o o o o  

ooo 020 

- 
Maximize the l inear  form 

Q I  

Q Z  

43 

9 4  

Qs 

Q o  

110, 0.4, 0.9, 1, 0.1, 01) 

under the given constraints 

QI 
Q2 
Q3 
Q, 
Qs 
Q o  

072 
-01 1 
4 1 1  
-012 
-006 

006 
-ooo 
-01 1 
-012 

100 
ooo 
ooo 
ooo 
020 

-01 1 
092 
008 
01 1 
006 

-009 
ooo 
008 
01 1 
ooo 
ooo 
100 

-040 
005 

-011 
008 
235 
019 
010 

-008 
-100 
ooo 
019 
ooo 
100 
ooo 
100 
007 

-012 
01 1 
019 
555 
01 1 

-012 
100 
019 
ooo 
ooo 
100 
ooo 

-I00 
ooo 

(8.22) 

70 
105 
140 
120 
70 
50 
0 

1 IO 
0 

250 
50 

100 
0 

95 

The problem was solved by the simplex method, and the resul ts  a r e  
l isted in Table 8.2. 

s 8.5 SOME GENERAL CONSIDERATIONS 

We should f i r s t  justify the application of l inear  programming to the oil 
field exploitation problem. In the general  ca se  of a plant without memory  
with constant coefficients in the algebraic equations describing i t s  behavior, 
l inear  programming can be used to a considerable advantage, especially 
since the numerical  algorithms of this method a r e  easi ly  adapted to  
digital computers.  Straightforward application of l inear  programming to 
oil  production control, however, would be somewhat improper ,  since no 
r ea l  oil r e se rvo i r  is actually maintained under steady-state conditions. 
The coefficients aij entering the initial equations of the technological p rocess  
and the constraint  inequalities a r e  variable in t ime, and not constant. In 
some  c a s e s  the coefficients aij change ve ry  slowly and gradually (e.g., in 
the case of migration of the formation boundary), whereas sometimes they 
will change abruptly ( a s  when the target f igures  are modified). 

justed as we go on, to mee t  the change in s tandards and specifications. 
The main difficulties thus a r i s e  due to the requirement of systematic  

The result ing difficult ies can  be overcome if  the coefficients a r e  ad- 
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adjustment of the coefficients ai j ,  which a r e  dependent on the s ta te  of the 
oil r e se rvo i r .  
pract ice  only by using each well successively to introduce a cer ta in  
disturbance into the process ,  while decoupling all  the other  wells, whose 
operation is stabilized with respect  to the disturbance parameter .  

Such operating conditions can be achieved by automatic stabilization of 
well operation. However, the direct  experimental  approach does not 

The values of these coefficients can be determined in 

t. days 
0 7 2 3 4 5 6  

7 

po -P =AP, atm 
t ,  days 

u z  6 8 7ff 

b 

P,-P=AP, atm 

FIGURE 8.4. Transients in a n  
oil- bearing formation. 

appear  par t icular ly  promising in view of the 
exceedingly slow transient  in the well-formation 
system and the rapid reduction of coupling with 
the distance from the source of the disturbance. 
Figure 8.4a plots the p re s su re  recovery in a 
well distant 500m from the disturbing well, 
which stopped producing at t = O .  Before that, 
the stopped well had operated for  a long t ime with 
constant output 1401. We see  from the curve that 
direct  experim-ental determination of aij requi res  
well observations over  a number of months. 
Besides being impracticable, this approach is 
inadequate since during such a long period other  
formation pa rame te r s  may  also change appreciably. 

The coefficients aij  can be obtained by direct  
experiment only if special wel l  stabilizing systems 
a r e  provided ( see  Figure 8.4b). 
model of the controlled object i s  incorporated in 
the control system and updated a t  fixed intervals  
on the basis  of cur ren t  information on formation 
s t ruc ture  obtained by geological, geophysical, 
and hydrodynamic methods 172,751. Successful 
models have been actually devised for  m o r e  or 
l e s s  uniform formations 1 7 2 ,  751 ,  but no adequate 
grid models have been built for  the general case 
of a reservoi r  of complex s t ruc ture .  The main 

In this case a 

difficulties a r e  associated with the determination of the mathematical 
nonuniformity function of the formation. 

The control system described in the preceding section is suitable for  
homogeneous o r  quasihomogeneous formations, where the s t ruc ture  of the 
producing s t r a t a  is such that the distribution of inhomogeneities between 
any two nearby wells is constant o r  follows the distribution of stationary 
random events. 

The flow char t  of a control system of this kind is shown in Figure 8.5. 
The basic  elements a r e  the grid model used to determine the corresponding 
coefficients aij  and a digital computer that calculates production schedules 
for  each well. 

coefficients a r e  overcome by periodically updating the position of the 
oil-water boundary on the grid model. 

A s  the process  dr i f t s  from the optimum or when the target  f igures  a r e  
changed, the ent i re  closed-loop control system is turned on (F igure  8.5). 
When the wells have been restored to the desired operating mode, the 
computers  a r e  disconnected and only the local control sys tems and the 

The difficulties associated with the slow variation of the well coupling 
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data-processing system a r e  left running. 
maintain the given operating mode in the interval between successive ad- 
justments,  and the information received from the wells through the data- 
processing system and through other channels is used to update the grid 
model. When the need a r i s e s ,  the computers a r e  again linked into the 
system, and the ent i re  cycle is repeated. 
can be used to calculate the coefficients a i j .  

The local control sys t ems  

Statistical forecasting techniques 

Plant 

Switch 
L I 

. .. I 
Control computer 1- 

w3 I I 

A 'd 

I 

dk a--+ 
FIGURE 8.5. Flow chart of automatic control system 

The solution of the problem i s  based on the assumption of a rigid 
operating mode ( s e e  Chapter One). It has been established, however, that 
immrdiately following the disturbance (when a well i s  stopped or  actuated, 
etc.), the oil r e se rvo i r  behaves according to a so-called elastic mode 1751.  
Although the pr-ocesses in the r e se rvo i r  may  remain l inear  in the sense  
that the principle of superposition holds true,  l inear  programming in i t s  
standard form is inapplicable. It is therefore again emphasized that our  
solution is valid for  a r e se rvo i r  in a rigid operating mode, which is the 
predominant but not the only mode. 

§ 8.6. 
CONTROL VECTOR AS A FUNCTION O F  TIME I N  
MORE COMPLICATED CASES 

METHODS FOR THE DETERMINATION O F  THE 

In the preceding sections l inear  programming was used to determine 
This  approach is valid as long the operation schedule for  each oil  well. 
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as the controlled object (e.g., the oil-bearing formation, ignoring i t s  
e las t ic  properties) is described by a s e t  of l inear  algebraic equations. 
The  planning and production constraints were represented by appropriate 
algebraic equations, and the solution was obtained in the form of a 
numerical  programme, o r  schedule, fo r  each well. 

s imple form, but the problem i s  nevertheless meaningful fo r  some  m o r e  
complex cases .  
formulation adopted in th i s  section, although the problem itself is basically 
equivalent to that considered in the previous sections.  All the propert ies  
of the controlled object and al l  the constraints a r e  known; we seek  a con- 
t r o l  function, i.e., the variation of the inputs a s  a function of time, that 
minimizes  (or  maximizes) a cer ta in  cr i ter ion function. The control t ime 
is often chosen a s  the cr i ter ion.  The problem thus reduces to  a selection 
of a control function which ensu res  a minimum transient t ime fo r  the given 
plant under the given constraints.  

The optimal solution in this  ca se  is to  choose, from among the control 
functions satisfying the given constraints,  one which moves the system 
f rom the initial to the final s ta te  in a minimum time. This  formulation is 
not different in principle from that used fo r  mos t  optimal control problems 
/21,  53/. 
single-variable sys t ems  / 17,25,28/.  
solved the problem of minimum transient t ime for  multivariable control 
systems,  but their  solution is based on the resul ts  of Krasovskii  / 2 5 / ,  
Kiri l lova /17 / ,  and Kulikowski /28 / ,  originally obtained f o r  single-variable 
systems.  

problem of optimum control is solved by methods of functional analysis.  
In our  opinion, the application of functional analysis m a y  prove t o  be 
highly promising, and we therefore  reproduce the resul ts  of Sarachik and 
Kranc /21 /  in some detail .  

l inear  object with cer ta in  constraints / 21/ .  
imposed on each input. 

For  objects with m e m o r y  the control function cannot be obtained in this 

Let u s  f i r s t  consider the new features  a r i s ing  from the 

The l i terature  on the subject, however, is mainly confined to 
P. E .  Sarachik and G. M. Kranc / 21 / 

A remarkable feature of the above studies /17, 25,28,21/ is that the 

We a r e  dealing with t ime optimal control of an absolutely controllable 
Different constraints  m a y  be 

The controlled object is described by the following differential equation: 

-X = F (4 x ( t )  + D ( t )  u ( t ) ,  (8.23) 

where x ( t )  is the n-dimensional s ta te  vector of the object a t  the t ime t ,  
u ( f )  i s  the r-dimensional control vector,  F ( t )  is a n x n  matrix,  D ( t )  is a 
n x r  matrix.  
n outputs. 
plant inputs by the equation 

It is c l e a r  f rom this  notation that the plant has  r inputs and 
In general, the system output is a vector y ( l )  related to the 

Y (0 = CL (4 x ( t ) ,  (8.24) 

where p ( t )  is a m x n  matrix.  
The initial state of the plant a t  the t ime t = f o  is described by 

x (to) =no. (8.25) 

By yr&) we denote the signal to be reproduced. The constraints imposed 
on the plant inputs u ( t )  a r e  given by 

(8.26) 
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where 
p i > I  and i = I ,  2, . . . ,  r .  

It is significant that pi and Li may be different f o r  each input, i.e., for  
each i. This means that the constraints on the components of the input 
vector depend on the inputs themselves; thus, fo r  an amplitude-limited 
input p i = l ,  and fo r  a power-limited input ( some  other  u j )  p,=2, etc. 

Find an input uo(I) which 
sat isf ies  constraints (8.26) and ensu res  equality of the output signal y (I) 
to the sett ing y,,,(t) a t  the t ime t = f l ,  so that T = t i -  t > O  is minimum. 

of this  problem. Given the plant equations, constraints,  and initial con- 
ditions, find a control vector u ( t )  of minimum norm 11 ullP which ensu res  
the equality y(t, )=y,, , ( t , )  in a predetermined t ime i l .  The solution ensuring 
the fastest  response is then determined from the solution of this  problem, 
and the minimum time corresponds to the case  when the minimum norm 
1 1  u I!,, is exactly 1 /25/. 

Using the Duhamel integral  approach, we write the solution of the se t  
of differential equations (8.23) in the form 

The problem is thus formulated as follows. 

Following N. N. Krasovskii  / 25/  we can give an alternative formulation 

(8.27) 

where @ ( t ,  T) i s  the fundamental matr ix  of the plant equations satisfying the 
condition @ ( t ,  T ) = E .  In / 2 1 /  i t  is called the t r a n s i t i o n  m a t r i x .  

The output signal y (I) is thus given by 

t 

Y (4 = P (1 ,  t o )  @ ( f ,  t o )  X O  + J F ( t )  @ ( f 9  T) D ( t )  u (t) dt.  

Let 

(8.28) 
t o  

Equation (8.28) can be simplified in the following way. 

e (0  =Y (4 -I* (4 @ 0 ,  to) x, (8.29) 

and 

H ( t *  T) = P ( t )  @ ( f v  t) D (T). (8.30) 

where H ( t ,  T) i s  the m X r  mat r ix  of weight functions of the controlled 
var iables  in a l l  the channels; e(I)  is the difference between the actual out- 
put signal and the output signal caused by the initial disturbance alone, 
when no input is received for  t> to .  In this notation equation (8.28) is 
writ ten a s  

(8.31) 

To solve the problem, we thus have to find the control vector  U ( T )  with a 
minimum norm (1 ullp satisfying the integral  equation 

(8.32) 
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where 
e&]) =Y&) - P (4 )  @ (f? t o )  xo. 

The vector  equation (8.32) can be replaced by m component equations 

I t  

J hj (tit u (t) dz = ere,, (tl) (8.33) 
t o  

( j =1 ,  2, . . . ,  m). 
Here  h i ( ( ,  T) is the j-th row of the mat r ix  H(t, T), and e r e , i ( t I )  is the i- th 
element of the vec tor  e d ( t , ) .  Since the object is absolutely controllable, 
there  is at  least  one control vector  satisfying the above conditions a t  an  
a rb i t r a ry  t ime t i ,  and the vector  with the minimum norm IIuII, should be 
selected f rom among these al ternat ives .  

functional 
Let  the s e t  of control vec tors  satisfying (8.33) be u A .  Consider the 

(8.34) 

where U ( z )  is an element of u A .  Hence, 

f a  (h j )  = ere,, (tJ. (8.35) 

Since f~ is a l inear  functional, we will consider  a rb i t r a ry  l inear  com- 
binations of hj( t ,  z) of the form 

m 

k (tlt) = 2 hjhj  (t,.) = W ( t , ,  T), (8.36) 
/ = I  

where Xis an m-dimensional row vector, so that applying (8.35) and (8.36) 
we wri te  

this  equality holds t rue  fo r  any k ( t , r )  descr ibed by an equation of the type 
(8.36). 

Fu r the r  solution of the problem is associated with the concept of the 
general  norm of a vector  1211. 
of the form (8.26) as a single constraint?  This  can be done by defining the 
norm of the control vector  u a s  

(8.38) 

How a r e  we to wri te  the se t  of r constraints  

llull = m y  [II ui Ilpi/hil. 

Now, if the single condition 

l l ~ l l <  1 (8.39) . 
is satisfied,  all the r inequalities (8.26) a r e  fulfilled, so  that the single 
condition (8.38) is in  effect equivalent to r constraints .  

Since relations (8.38) are not ve ry  useful in the i r  original form,  the 
solution can be simplified by fur ther  generalizing the definition of the 

252 

, .. I 



norm of the vectoru( t ) .  The most  general  norm is defined a s  

(8.40) 

where p > /  I and (IuiJlpi a r e  given by (8.26). 
be used to show that fo r  p + m  the solution of the problem with a bounded 
IIuJJp approaches the solution with a bounded IlaII, so  that constraints  (8 .26 )  
a r e  replaced by the single inequality 

/I llP < 1 . (8.41) 

The resu l t s  of Kirillova /17/ can 

The  solution of the original problem is thus obtained by f i r s t  solving the 
problem with constraint (8.41) and then letting p+m. 

We now re turn  to the solution of our problem. 
we obtain 

Using (8.26) and (8.41), 

and 

(8.42) 

(8.43) 

where k i ( f 1 . r )  i s  the l-th element of the row-vector k ( t , ~ )  defined by (8.36), 
and q i , q  a r e  related top , ,  p f rom (8.40) by the equalities 

and 

1 1  - + - = I  
41 pi 

1 1  ,+-=l. P 

Consider  the quantity l lfAII,  the so-called 
defined by 

norm of the functional f A  1281, 

where k i s  from (8.36). Using (8.36), (8.37), and (8.44), we find 

(8.44) 

Let  1* be the vector  whose coordinates minimize the norm 

condition Ae,,,(t,) = 1. Then 

(8.45) 

(8.46) 
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Under these conditions equation (8.37) may  be writ ten as 

(8.47) IIPAll=" 1 

To proceed fur ther ,  we require  the generalized Hoelder inequality. 
Hoelder 's  inequality fo r  s u m s  is /33/ 

and the equality is obtained if and only if 

ai=kIp,Iq-Isignpf for  i = l ,  2, ... .n, 

(8.48) 

(8.49) 

k being an a r b i t r a r y  constant. 
fo r  the integral  

We are interested in Hoelder 's  inequality 

b b n  

We have to prove that 

(8.50) 

(8.51) 

where 
1 1  p > l ,  q > / l  and - + - = I ;  P 9  

Inf (t)IP'l and l y , ( t ) r ( a r e  integrable, and L, are positive quantities. Moreover,  

and 

fo r  

(8.52) 

We f i r s t  prove that inequality (8.51) reduces to an equality i f  and only i f  

x i ( t ) =  kLPUyi[~-") /yf  (t)P-'signy,(t) (8.53) 

f o r  any a < t < b , any i= I .  . . . . n, and an a rb i t r a ry  constant k. 
Hoelder' s integral  inequality is generally written in the form 

(8.54) 
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1 1  with p >  1, q > 1, p+Q= 1 and integrable I x ( t ) IP  and l y ( t )  I q ;  the equality 

is obtained if and only if 

x ( t )  = k I y ( t )  lq-' sign y (t), (8.55) 

k being an a rb i t r a ry  constant. 
I t  has  been proved 121 1 that these resul ts  hold t rue fo r  p =  1 and q= 1. It 

has  been fur ther  established 1211 that Hoelder's inequality fo r  s u m s  (8.48) 
and condition (8.49) hold t rue  f o r  P = 1 and q = 1. 
equality f o r  the integral  (8.50), we note that 

To obtain Hoelder 's  in- 

(8.56) 

and the equality is obtained if and only if  

f o r  a , < t , < b  and i= l ,  . . . ,  n. 
Using Hoelder's inequality in the form (8.54), we find that 

I b  I 

(8.58) 

1 1  f o r  pi  > 1, q1 > 1 and - f- = 1, where 1 xi ( t )  I *, 41 PI 91 

Using (8.55) we find that (8.58) reduces to an equality only if 

and (y,  ( I )  I a r e  integrable.  

xi ( t )  = Kl 1 y, ( t )  lqi sign y, ( t )  for  a ,< t ,< 6. 

Substituting (8.50) and (8.58) in (8.56), we find 

(8.59) 

(8.60) 

If (8.59) holds t rue for  any i = I ,  . .  . ,  n and i f  all Ki have the same  sign, 
condition (8.57) is satisfied.  
obtained if and only if (8.59) holds t rue for  any i= I ,  . . . , n and a l l  Ki have 
the s a m e  sign. 

This  means that the equality in (8.60) is 

Let  

whe-re Li is a positive constant. 
x+ and Gi being positive, we have 

(8.61) 

I 

(8.62) 
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Using (8.48) and (8.49), we find 

(8.63) 

1 1  
P 4  where p > l ,  q > l  and-+-=I,  and the equality in (8.63) is obtained if and 

only if 

x̂[ = 4 1 ii 1g1-I sign j ,  (8.64) 

f o r  a l l  i, k being a positive number.  
dition (8.64) takes  the form 

Since xi and ij a r e  positive, con- 

. . -  
xi  = kyf -1 .  (8.65) 

Substituting (8.61) in (8.63) and making u s e  of (8.60), we obtain Hoelder’s 
generalized inequality in the following final form: 

(8.66) 

Inequality (8.66) reduces to an equality i f  and only if (8.60) and (8.63) 

( a )  a l l  K i  a r e  of the same  sign; 
(b)  relations (8.59) and (8.65) hold t rue.  
Consider relation (8.65). W e  have 

a r e  fulfilled. This  means that the following two conditions must  be satisfied: 

= LgYP-1 k^Lq-’II y, (8.67) 

Inserting fo r  /xi[ in the integrand i t s  expression from (8.59), we find 

L;1 ]K,JJJy,l~Pi=)SLy-L t II Y’ 11;;’ 

~ ~ ~ ~ = ~ ~ ~ ~ ~ y ~ ~ ~ ~ ; ~ i  fo r  i = ~ ,  2, ..., n. 
For this  reason, if Ki in (8.59) is chosen so that (8.69) is satisfied, 

(8.66) is fulfilled automatically. Ki may be ei ther  positive o r  negative; 
the only point is that they should invariably be of the same  sign. This 
means  that (8.69) and conditions ( a )  and (b) can be replaced by a single 
condition 

(8.68) 

or, solving for  IKil ,  

(8.69) 

K,= G llYi lriqi (8.70) 

fo r  a l l  i= 1. . . . , R .  

Substituting (8.70) in (8.59), we finally obtain 

xi ( t )  = G IY, [,? 1 Y, ( t )  v - l  sign q ( t )  (8.71) 

f o r  a< t<  b and a12 i = l ,  2, ..., n. 
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We now re turn  to o u r  original problem. Consider the functional 

I t  

f , (R*)=j-k'( t , ,  T ) U ( T ) d T .  (8.72) 
1. 

Using Hoelder's generalized inequality, we find that 

i f A ( k * ) i  ,< i i q u ~ i c ;  (8.73) 

and seeing that f A ( R ' ) = A ' l r , ( t , ) = l  we have f rom (8.47) 

(8.74) 

Inequality (8.74) is thus a necessary  condition fo r  U ( T )  to be an  element  of 
the s e t  uA. 

From (8.74) we can now derive a necessary  condition fo r  u (T) E U A  to 
have a minimum norm IIu I l p  , specifically: 

(8.75) 

which is obtained i f  the equality is taken in (8.74) and (8.73). 
obtained f rom Hoelder' s generalized inequality show that the equality in 
(8.74) is obtained if the components u i ( ~ )  are of the form 

The relat ions 

Substituting (8.76) in (8.75), we find the constant k ,  

(8.77) 

Equation (8.75) thus holds t rue if and only i f  

ui (T) = ~ L' l / k f l ~ ~ q ' l ~ ; ( t l ,  T)qf-llsignk:(t,, T). (8.78) 
( I1 k' 114lq 

F rom the resul ts  of Kirillova / 1 7 /  we fur ther  obtain (putting q = l  in 
(8.75), which corresponds to p + c c  ) 

where the as te r i sk  marks  those quantities which are determined f rom 
l.?, i. e . ,  

I/ VI/, = min 2 L~ li ki  IL, (8.80) 
I 1 = l  

on condition Ae,,,(t,)= 1 . 
the effect of the constraints. A s  has  been shown in the preceding, all the 
constraints  can be summar ized  by a single condition imposed on the norm 
of the control vector: 

nul ,< 1. (8.81) 

To solve the original problem of t ime optimal control, we have t o  study 
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Moreover, for  p = w ,  9 =  1, and 

(8.82) 

Hence it follows that fo r  any tl the problem is solvable if and only if 

Ilk'll, > 1- (8.83) 

Let  lJR'j, be a continuous function of t , ;  the minimum timeTo=t;-&,is 
then obtained fo r  the sma l l e s t  t i = f : ,  such that 

ll4, = 1. (8.84) 

and this fact is used in the determination of t;. If we now apply the solution 
of (8.79) with the minimum norm, we find for  f , = t ;  

1 II U'U = 1 (8.85) 

so that the solution given by (8.79) sat isf ies  both the constraints and the 
final conditions in the shortest  t ime and is thus time-optimal. 
we find 

Using (8.85) 

(8.86) 

where kf is determined by solving (8.80) fo r  5' and substituting the solution 
in (8.36). F r o m  (8.85) we then find the minimum I ,  equal to t ; .  

We have considered in some detail the theory and the proof of 1211 for 
the determination of a control function ( a s  a function of t ime) ensuring a 
minimum transient t ime for  the problem a t  hand. 
complexity of the method and the introduction of mathematical  techniques 
which are unfamiliar to most  engineers,  i t  s e e m s  to u s  that the effort is 
justif ied by the simplicity of the final solution. 
however, on the practical  value of the result .  
inputs (the control vector) is specified as a function of time, and not a s  a 
function of the plant outputs. 
control system, with al l  the consequences. But t he re  is m o r e  to it. The 
mathematically derived input vector should be implemented in practice,  
and this  requires  the introduction of special  equipment whose properties 
have not been allowed fo r  in the mathematical  stage. 
significant point in o u r  opinion, since the complete system, including the 
equipment that implements the control function, is essentially different 
f rom the initial system where only the plant propert ies  are relevant. This 
r emark  applies to a l l  solution techniques which produce the control vector 
a s  a function of time. Fu r the r  on in this chapter we will consider methods 
fo r  the derivation of control vectors  a s  a function of the output (controlled) 
variables.  

Despite the apparent 

W e  would like to comment, 
Here the vector of plant 

This is equivalent to setting up an open-loop 

This is a highly 

58.7. APPLICATION O F  METHODS O F  
VARIATIONAL CALCULUS 

In this and the following sections we will consider the construction of 
multivariable control sys t ems  whose properties sat isfy a cer ta in  optimality 
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test. 
e r r o r  of some function of the controlled variables, the i r  derivatives, 
and plant inputs 1 3 0 ,  66/. 
For  a controlled object of known character is t ics ,  choose the control 
system, and in par t icular  the controller, so a s  to satisfy a cer ta in  
optimality test .  
t ro l  systems.  
correspond to t h e  s e t  of a l l  c o n t r o l l e d  v a r i a b l e s ,  and not to  
some i n d i v i d u a l  variable. 

This  approach was developed by A. M. Letov 1301 for  the synthesis of 
control lers  in single-variable systems,  and he called h is  technique t h e  
m e t h o d  of  a n a l y t i c a l  c o n t r o l l e r  d e s i g n .  His  resu l t s  a r e  used 
he re  insofar as they a r e  applicable to multivariable control systems.  te 

Let the controlled plant have n controlled var iables  Yi  and m cont ro l le rs  x j .  
Here in>, n. A control system is hooked up for  each controlled variable. 
For simplicity we wi l l  first assume that each controlled var iable  is described 
by a f i r s t  o rder  equation. 
through the plant, we write for  the i-th variable 

A frequently used optimality tes t  is minimizing the integral  square 

The general problem is formulated a s  follows. 

This  formulation is fully applicable to multivariable con- 
In the l a t t e r  case,  however, the optimality tes t  should 

The mathematical formulation of the variational problem is the following. 

Seeing that the controlled var iables  interact  

(8.87) 

Here a i s  taken with i ts  algebraic sign. 
a complete set  of differential equations describing the dynamics of a multi- 
variable plant. 

Taking i =  1. 2, , . . , n, we obtain 

The initial conditions for (8.87 a r e  

(8.88) 

This set  of equations can be written for  deviations of the plant inputs and 
outputs. 
replace Y i ,  Y k r  and x k  in (8.87) by AY,,  AY,, and Ax,,. 
stable system is then described by AYi=O, and if the input deviations a r e  
reckoned from a new steady-state level, we have 

Taking Yi= Yi0+AYi and considering the deviations only, we should 
The final s ta te  of a 

A x , = O ,  t=w .  

In the following w e  will be only concerned with the deviation of the plant 
inputs f rom a cer ta in  prescr ibed value, but the equations wi l l  be left in 
the original form (8.87), with Yi .  Y , ,  and xk interpreted a s  the deviations. 

The initial and the final state a r e  then 

Y,=Y , ,  ( i = l ,  ..., n), 

Y, =o ( i = l  1 ... 1 n), 
x,=o ( j=1, .. ., m). 

fo r  t = O  

for t = w  

( X , = X , ,  ( j = l ,  ..., m); 
(8.89) 

Analysis and synthesis of multivariable control systems in a somewhat different form from that presented 
here were carried out by Ma Fu-wu as part of his post-graduate studies under the direction of the author. 
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The  plant inputs Xj a r e  the controller outputs. The controller s t ructure  
and pa rame te r s  a r e  not known a t  this stage.  
these unknowns so that the control system conforms to a cer ta in  optimality 
tes t .  

The  variational problem is thus given the following mathematical  formu- 
lation. Suppose that the cr i ter ion function of the optimality t e s t  is the 
integral  

O u r  problem is to  choose 

m 

Y ( X , ,  ..., X , ) = $ V d t ,  (8.90) 
0 

where 
(8.91) 

The integral  (8.90) is a functional defined on a cer ta in  c l a s s  of functions, 
and i t s  value is the integral square e r r o r  with constant weights ak. bj  that 
the system acquires  during a transient t"=oo. 
analytical expression for  the control function 

Our  ajm is to find the 

'p(Y1, . . ., Y" ,  X I ,  . . ., x , )  =o,  (8.92) 

which, in conjunction with the original s e t  of equations (8.87), constitutes 
a stable system and minimizes the functional (8.90) .  
dealing with a l inear  system, o r  to  use  the conventional terminology, 
equations (8.87) a r e  defined in an open domain. 

Meanwhile we a r e  

L,agrange's function is 

(8.93) 

o r  

where hk a r e  Lagrange's multipliers.  
We have 

dH dH 
7 - = 2akyk- 2 kiuik. 

dyk  d y k  1 
I dH dH -- = 2bjxj  - x p i h h j ,  -= 0. 

ax; 
I' 8x1 

The Euler-Lagrange equations a r e  thus 
h; = % k y k  - 7 L i u i k o  

2b jx j  - 2 B i k h j  = 0 
I 

( k =  1, ..., n; j = l ,  . . ., m), 

(8 .95 )  

(8.96) 

and these equations, together with (8.87), define the propert ies  of the multi-  
variable control system. 
can find the controller equations fo r  the multivariable system. 

and two controlled variables interacting through the plant. 

Proceeding along the s a m e  lines a s  in /30/, we 

Consider the case  of a multivariable control system with two control lers  
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The plant equations a r e  

(8.97) 

Unlike the general  case,  w e  assume that the control lers  do not interact, 
i.e., Pfk=o, i # k .  The  functional to be minimized is 

(8.98) 

Lagrange 's  function for this example i s  

d H  _- d y ;  - A l l  (8.101) 

(8 .1 02) 

(8 .1  03) 

(8 .1  04) 

(8.105) 

d H  -=os 
dX; 

(8.1 07) 

F rom (8.100) -(8.107) and (8.97) we write the Euler-Lagrange equations 

(8.108) 
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The pa rame te r s  of equation (8.110) should be chosen so a s  to ensure 
stabil i ty of the system. 
a12anc! azl depend on the properties of the controlled plant. 
efficients generally have the sign minus, and in what follows we indeed 
assume negative at2 and ~ Z I .  Strictly speaking, the coupling coefficients 
m a y  be inherently positive o r  they can be made positive, as in ane lec t r i ca l  
system with mutual inductance. These cases  a r e  not considered he re .  
the following we assume that the plant is intrinsically stable (without a 
controller). Therefore,  given the plant equation in the form (8.87), we 
conclude that aii a r e  a lso negative. The weights b, and b2 a r e  positive by 
definition, and so  only the sign of the coefficients p l l  and p22 is unknown. 
We s e e  from (8.110). however, that this uncertainty is of no consequence 
a t  this stage, since fht and 822 a r e  squared in the coefficients of (8.110) 
and their  sign is therefore irrelevant.  
shows that the expressions in parentheses in (8.110) a r e  inherently positive. 
The minus sign in front of one of the coefficients in the f r e e  t e r m  of (8.110) 
does not affect this conclusion, since clear ly  ccii>aik; but even without this 
condition i t  is readily seen that in the final account the coefficients of 
(8.110) are positive. 

AZ fo r  the f r ee  t e rm in (8.110). 

F i r s t  note that the siEns of the coupling coefficients 
These co- 

In 

Our  preliminary analysis thus 

Le t  A, stand for  the coefficient of p', Alfor the coefficient of p*,  and 
Equation (8.110) then takes the form 

AOp' - Alpz + A, = 0. 

Substituting 

we find 

A&? - A,& + A, = 0, 

and the solutions a r e  

(8.11 1) 

(8.112) 

It is also easi ly  seen that A:>4A&, so  the roots of (8.112) a r e  positive 
numbers  El and 52. The original character is t ic  equation thus has  four 
roots: 

and I (8,113) 

W e  will only use  the roots pi and PS, having Re p < O .  The solution fo r  the 
inputs and the outputs i n  this ca se  is 

( 8.1 14) 

(8.115) 

(8.1 16) 

(8.1 17) 
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Here A,,  A2, As, and A, a r e  respectively the minors  of the determinantof 
(8.110) for  the f i rs t  element of the f i r s t  row, the second element of the 
second row, the third element of the third row, and the fourth element of 
the fourth row. 

between (8.114) -(8.117). 
In o r d e r  to find xl. x2 a s  a function of y,. yz, we should eliminate t ime 

The determinant of the controller equations is 

AI (PI) AI(PS) YI 

Aa(Pi)  A a ( P s )  Yi 

&(PI) A3(Ps)  XI 

= 0, 

(8.118) 

It is thus c l e a r  from this equation that the optimum in the sense of o u r  
analysis is ensured if  the controller action is influenced by the two con- 
trolled variables y, and y2. This confirms our  e a r l i e r  conclusion that 
interacting control produces an extremum, and a noninteracting control 
system will therefore give poorer resul ts  f rom the aspect of ouroptimality 
tes t .  It is perfectly obvious that the equation of the second controller is 
also a function of both controlled var iables  yl and yz. 

Another highly significant conclusion from this example is the following. 
Substituting fo r  Ai(pj) their  values, we obtain a controller with infinitely 
fast  response.  
of analytical controller design fo r  a single-variable system. 
point is that a system of this kind can be built o n i y  using s t ruc tu res  which 
a r e  stable at infinite gain. 

stabil i ty we have shown that interacting control, under cer ta in  conditions, 
has  bet ter  dynamic response than noninteracting control (see Chapter Four). 
In the present  chapter, in solving the problem of a controller extremizing a 
cer ta in  cr i ter ion function, we have established that interacting control is 
essent ia l  fo r  this purpose and that the system must  have infinite gain 
stability. This c lear ly  gives collateral  support  t o  o u r  previous asser t ion 
that s t ruc tu res  stable a t  infinite gain should be p re fe r r ed  in multivariable 
control systems.  

So f a r  we have been dealing with a controlled plant whose outputs a r e  
described by f i r s t -o rde r  different equations. 
procedure,  however, is quite general  and can be used with output equations 
of higher o rde r .  In this case,  each of the equations of v-th order ,  say, 
can be reduced to v f i r s t -o rde r  equations, and Lagrange's function and 
the variational equations a r e  then writ ten fo r  each of them separately.  
The mathematical  manipulations a r e  fa i r ly  tedious even f o r  the s implest  

This result  was also obtained by Letov /30/ in an example 
The essential  

In ou r  discussion of multivariable control sys t ems  with infinite gain 

The controller selection 
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case  of a two-variable system described by f i r s t -o rde r  equations with 
iner t ia less  control lers .  Although the difficulties a r e  m e r e l y  technical and 
can be easi ly  overcome with the aid of modern computers,  the resul ts  a r e  
f a r  from being easy  to grasp,  especially fo r  the m o r e  complex cases .  
Therefore ,  following 1301,  we will consider some applications of dynamic 
programming to  the design of multivariable control systems.  

5 8.8. BELLIVIAN'S PRINCIPLE O F  OPTIMALITY 
AND THE FUNCTIONAL EQUATION 

In this  section we will descr ibe some resul ts  due to  R. Bellman / 7 / ,  
which will be used in the following. 
regarded a s  a substitute for  reading Bellman's book 171 ,  but it will 
enable the r e a d e r  to follow the synthesis method proposed fo r  multi-  
variable control sys t ems  minimizing o r  maximizing (according to  the 
par t icular  tes t  used) a cer ta in  cr i ter ion functional of the system a s  a whole. 

controller design in single-variable systems.  
resul ts ,  we will a l so  apply h e r e  some of Letov's techniques and conclusions. 

The brief exposition h e r e  cannot b e  

Letov / 30/ used Bellman' s dynamic programming method for  analytical 
In addition to Bel lman's  

1. Multistage allocation process  and optimal policy 

We s t a r t  with a cer ta in  limited quantity of r e sources  x that can be used 
If a cer ta in  quantity of r e sources  to buy equipment of two kinds, A and B.  

O,<y<x is allocated to purchase equipment A ,  and the remaining ,I-y to  
purchase B ,  the total return,  expressed in t e r m s  of labor,  say,  is 

Rl ( x .  Y) = g (Y)+ h ( x  - 54. (8 .120)  

Here  g(y) is the r e tu rn  from the allocation y, and h ( x - y )  the re turn from 
X-y. 
Rl(x,  y )  is maximized. The maximum return is thus 

The problem is to choose such y in the interval [0, X ]  that the return 

( 8 . 1 2 1 )  

If this problem is solvable, we have a single-stage allocation, to u s e  
Bellman's terminology / 7 / .  

Consider a multistage process .  
operation, the equipment is sold, bringing ay money units a s  the p r i ces  
of equipment A ( 0  ,<a<l)and b ( x -  y) units a s  the price of B. 
s tage thus ends with an additional quantity of r e sources  xl, where 

Suppose that a f t e r  some  t ime in 

The f i r s t  

XI = ay+ b (x  -y). 

These r e sources  x1 a r e  again used to purchase equipment. 
y, is allocated to c l a s s  A and x1 - y1 to  c l a s s  B ;  the re turn is thus 

In this purchase 

g (Yl) + h (XI - Yl)? 

where 0 < y l  < x I .  
sis t ing f i r s t  in the choice of y and then the choice of y1 is thus 

The total r e tu rn  of the two-stage decision p rocess  con- 

Rz ( X ,  Yt Y J  = g (Y)+ h (x  - y)+g ( Y J  + h (4 - Yl)?  (8 .122 )  
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where 

and (8.1 23) 

The maximum re tu rn  is attained if y and yl a r e  so chosen that 

If the buy-and-sell process  is repeated n t imes,  we obtain an n-stage 
Rz(xl, y, y,) is maximized under constraints (8.123). 

allocation process  with the total re turn 

~ ~ = ~ y ~ - l t b ( ~ f ~ l + ~ i ~ l )  f o r  i = l ,  2, ..., n-1, (8.125) 

(8.126) 
yo=y and x o = x  , 

O , < y < x ,  O d y , , < x ,  ( i = l ,  ..., n-1). 

The maximum total r e tu rn  is attained i f  the yi a r e  so  chosen that R, 
i s  iiizximized under constraints (8.125) and (8.126). The fact  that  the 
problem is essentially an n-stage decision problem can be applied to 
simplify the solution and pr imari ly  to reduce the number of variables.  
It is significant that in the k-th stage the problem can be solved if yh--1 
alone is known. The value of Yh-l depends on xh-1 and the remaining N - k 
stages.  

Hence, to decide on a solution for  the k-th stage i t  is important to  know 
the r e sources  available a t  that stage and the number of s tages  to  go; in 
other words, the problem is as i f  formulated anew at  each stage,  with a 
given number of s tages  and given quantity of resources .  Following 171,  
we introduce two new concepts. 
is called a policy. 
cer ta in  cr i ter ion function is called the o p t i m  a 1 

The sequence of solutions (y. y ~ .  . . . , yn-4) 
A policy maximizing the total re turn according to  a 

p o 1 i c y  . 

2. 
and Bellman's principle of optimality 

Formulation of the problem using functional equations 

Le t  fn(x) be the total re turn for  an n-stage process  with initial r e sources  

W e  will derive a r ecu r rence  relation for fn(x)  and f n + l ( x ) .  
x and an n-stage optimal policy, n=l, 2, . . .  . 
allocation be y n r  and we consider a (n+l)-s tage process .  
re turn is g ( y ) + h ( x - y ) ,  the total re turn afte'r the (n+l)- th  stage is g(y)+h(x-y), 
plus the n-stage return,  assuming xl=ay+b(x-y)  a s  the r e sources  af ter  
the f i rs t  stage. Theessen t i a l  point is that, i r respect ive of y, the r e sources  
ay+b(x-y)  a r e  recovered using an optimal allocation policy in the next 
n-stages.  

tion y between 0 and x, is 

Let the initial 
If the f i rs t -s tage 

The total  n-stage return will then be fn[ay+b(x-y)]. 
Hence, the total  r e tu rn  af ter  the (n+l)- th  stage,  with the init ial  alloca- 

(8.127) 
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Now, y should be chosen so a s  to maximize (8.127). Since themaximum 
is numerically equal to the function 
relation 

we obtain the basic r ecu r rence  

(8.128) \ ,+I (4 =,,",":, If7 (Y) + h (x  - Y) + f, lay + (x - Y)H, 
n= 1, 2, . . . 

Let  u s  now compare the two formulations of the same  problem. 
f i r s t  formulation, we were  expected to choose yi. i= I ,  . . . , n - 1 , maximizing 
R,,(x, y. yI, . . ., y,,-,), and in the second formulation we had to select  n 
functions f n  fo r  one y. 
is much more  convenient for  practical  calculations and readily brings out 
the dependence of the solution on various parameter  changes. 
formulation, the function f n + l ( ~ )  can be determined if f n ( x )  alone i s  known. 
We thus a r r ive  a t  " D e l l m a n ' s  p r i n c i p l e  of  o p t i m a l i t y :  an 
optimal policy has  the property that whatever the initial s ta te  and the initial 
decisions a re ,  the remaining decisions will constitute an optimal policy 
with regard  to the s ta te  result ing from the f i r s t  decision. 

In the 

Bellman / 7 /  has shown that the second formulation 

In the second 

3. The fundamental functional equation 

Consider the following problem: maximize the functional 

T 

S(y)=SF(x ,  y)df 
0 

with the constraints 

(8.1 29) 

and (8.130) 

This  is an ordinary variational problem which is solved by the methods 
of c lass ical  variational calculus, with cer ta in  conditions imposed on the 
functions G ( x ,  y)  and F ( x ,  y) .  

R. Bellman has suggested that the variational problem can be treated a s  
a continuous multistage process.  
in finding y a s  a function of t for O,<t,<T but r a the r  Y ( 0 )  a s  a function of 
the initial s ta te  X ( O ) = C  and the time interval T ;  in other words, we a r e  
looking fo r  a functional equation 

Le t  u s  consider this problem from the aspect of dynamic programming. 

In this approach we a r e  not interested 

f IX (Oh TI = f (C, T) = m;x Y (y). (8.131) 

Le t  F ( x ,  y) and G ( x ,  y) respectively ensure the existence of a maximum and 
the continuity of f ( C ,  T )  a s  a function of C and T .  
that f has  continuous partial  derivatives with respect  to C and T in any 
bounded region C > 0 and T > 0.  

It is moreover  assumed 

Along the extrema1 y we have 

P P+T 

f ( C ,  p + T ) = J F ( x ,  y ) d t + J  F ( x ,  y)dt .  (8.132) 
0 P 
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For f = p ,  x is equal to  x(p), which is found from the equation 

dx 
dt - = 0 (x,  y). 

Let  x(p)=x(C). 
According t o  the principle of optimality we obtain along the extrema1 

P 

The integral  (8.129) is thus replaced by the equation 

(8.133) 

Now y is chosen so as to maximize (8.134). Hence 

( 8.1 35) 

Let F ( x ,  y) be continuous in x and in y, and have continuous partial  
derivatives with respect  to  C (  f c )  and T (  f T ) ;  if moreove r  y is a continuous 
function of f ,  then fo r  sma l l  p we m a y  write 

f (C> P t  T ) = f ( C .  T)+P$+O(P),  (8.136) 

(8.137) 
f(C(P), T)=f (C,  T)+P0(C, V)$+O(P) (8.138) 

C (P) = C + PO (C, V) + 0 (P)* 

and 

/F (x ,  Y) d t  = PF (C, v) + 0 (P). (8.139) 
0 

Here v=y(O)=v(C, T). In the limit, a s  p+O, we find 

(8.140) 

In our  e a r l i e r  notation, taking a s  the cr i ter ion function the integral  
ra 

J F ( x ,  y ) d f  with the constraints 
0 

dx _-  dt  - 0 ( X .  !I)* 

we write Bellman's functional equation in the fo rm 

,n[F,, Y)+G(A Y)g ]= f , .  (8.141) 

The ma te r i a l  of this  section is sufficient fo r  fur ther  discussion. 
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§ 8.9. APPLICATION O F  DYNAMIC PROGRAMMING 
T O  THE SYNTHESIS OF MULTIVARIABLE 
CONTROL SYSTEMS 

Consider  a controlled object with n outputs (controlled var iables)  
interacting through the plant and m controlling inputs; h e r e  m>n. The 
controlled var iables  a r e  again denoted by y i  and the controlling inputs 
by xj; here  i = l ,  . . . , n. and j = l ,  . . . , m. 

The equation of motion of the sys tem can be written in mat r ix  form as 

~ = A Y + B X ,  Lit (8.142) 

where A is the mat r ix  of plant parameters  and coupling coefficients, B 
the mat r ix  of control ler  coefficients, Y and 
t=O, we take Y = Y ( O ) .  

The cr i te r ion  function is the integral  

a, 

Y (X) = J Vdt .  
0 

The problem is t o  find a control function 

X are column vectors. F o r  

(8.143) 

X as a function of the Dlant 
s t a t e s  which minimizes  the functional (8.143) / 30/. 

differential  equation. 
the general  case  and then reduced to the form (8.142). 
can be stated as follows. 
equation of Vi-th order .  
o r d e r  equations, we find 

In (8.134) i t  is implied that each output is descr ibed by a f i r s t -order  
The perturbation equation can be easi ly  written f o r  

The problem then 
Suppose that the i- th output is described by an  

Reducing the Vi-th o r d e r  equation to  Vi f i r s t -  

(8.144) 

yk,-- dY"' 
dt  ( l = l ,  ..., n; R = l ,  .... Vl-,). 

For simplicity we will henceforth assume that each output is described 
by a f i r s t -order  equation. 
sequsnce, s ince in the m o r e  general  case  the equation is reduced t o  the 
fo rm (8.142) and the synthesis methods derived in  the following a r e  direct ly  
applicable. 

In principle this res t r ic t ion is of no con- 

In expanded form (8.142) is written as 

Y i  (f) = 0, Yi (0) = YIO. 

To simplify the notation, (8.145) can be written as 

3 = 0, (Yl, . . . , Y,,  X,, . . . , X,) = 0, (Y ,  X )  

(i't, * .  ., n). 
dt  

The cr i te r ion  function is the integral  (8.143) with 

(8.145) 

(8.146) 

(8.147) 
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r 

Here ai and b j  are known nonnegative weight coefficients, whose values 
a r e  chosen according to  the desired sharpness  of the minimum in each 
controlled variable.  

Solution for  an open domain 

In an open domain G ( Y ,  X )  the function is minimized ove r  a c l a s s  of 
functions where Xi and Yi  a r e  continuous and continuously differentiable. 

Following the procedure of / 30/ fo r  single-variable systems,  we solve 
the problem fo r  multivariable control systems using Bellman's dynamic 
programming method. 

c l e a r  f rom the preceding discussion of Bellman's resul ts  that the minimum 
of I ( X )  is a cer ta in  function $(Yo)of the initial s ta te  of the system. 
therefore write 

Le t  the functions X = X ( x i .  . . . , x,) minimize the functional (8.143). It is 

We may  

m i n f  (X) =$(Yo). (8.148) 
X 

Bellman's conditions for  o u r  ca se  take the following form.  For a 
positive p we may  write 

03 0 m 

f(X)=] V d t = j v d t + ]  V d t .  
0 0 P 

(8.149) 

By Bellman's principle of optimality i t  is c l ea r  that, i r respect ive of the 
choice of the function X [0, p] over  [O, p], the function X [p. m] over  [p, m] 

minimizing the functional J V d t  can be chosen a s  i f  minimizing the 
m 

P 

functional Y V d t ,  with the difference that Y, takes on the role of the 

initial s ta te  at the t ime t = p .  
0 

Hence, 

m 

Therefore,  by (8.149) and (8.150), 

(8.150) 

(8.151) 

Let  p be sufficiently small .  Then, if the function Q is differentiable 
with respect  to Yi fo r  fE [0, pL we have 

(8.152) 
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A s  f o r  the residual t e rm o(p), we have fo r  p - 0  

Equation (8 .152)  can be written as 

( 8 . 1 5 3 )  

F o r  p-+O the interval  [O, pJ contracts  to the single point 0, and the choice of 
the function X [0, p] over  this interval  reduces to the choice of X ( 0 ) .  

Pass ing  to the limit a s  p+O, we obtain the equation in explicit form 

In o r d e r  fo r  (8 .154)  to give a minimum in x i .  the derivatives of ( 8 . 1 5 4 )  
with respect  to x i ,  . . . , n, should vanish. 
we thus have m + l  equations, that i s  

F o r  the solution of our  problem 

(8 .155)  

F r o m  ( 8 . 1 5 6 )  we have 

Substituting xj f rom (8 .157)  into (8 .155) ,  w e  find 

( 8 . 1  5 7) 

( 8 . 1 5 8 )  

We have ended up with a l inear  partial  differential equation. Its solution 
gives the sought relationship between the control ler  outputs and the con- 
t rol led var iables ,  i.e., the control ler  inputs. 

Example 

Consider  a controlled plant shown in Figure 8.6. The controlled 
var iables  l', and Y2 interact  through the plant, a s  is shown by the d i rec t  
coupling in the block diagram. 
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The gain parameters  and the t ime constants a r e  KII .  K22. 7 ‘ 1 1 ,  T 2 2  for each 
self-var iable  and KI2, KZ1, TI2, T z I  for  the coupling elements.  
a l l  the variable symbols stand for the deviations of the corresponding 
var iables  f rom steady-state values. 
fo rms  i s  

In what follows 

The plant equation in Laplace t rans-  

(8.159) 

u2 (P) = Km PI (PI+ w P 2  K2X ( P I 3  (8.160) 

KI I KI2 
y ,  (PI = PI (PI + 112 (PIl 

where p1 is the control ler  input for  the f i r s t  variable, 
second variable. 

PZ ditto f o r  the 

The control ler  inputs and outputs a r e  related by 

(8.161) 

P2 @) = uzxz (PI. (8.162) 

Eliminating PI. PZ between (8.159) and (8.162) and changing back to the 
originals, we write 

~ 1 1 T 1 2  + + V l I +  TI21 + + Y1 = u1u11T12 + + 
i- U2U12T11 %+ UllK,x, + U2K,2~2r (8.163) 

T 2 2 T z 1 ~ + ( T ~ ~ +  T2d%+y2= U1U2~T22$$+ 

i- K 2 U 2 2 T 2 1 ~  i- UIUZIXI + u2u21x1’ (8.1 64) 

To simplify (8.163), (8.164), we substitute 

dxa - (8.1 65) dyi dY2 d x  dt = Y12. dt =y22. + = XlZI 7 -x!m 

In this notation, equations (8.163), (8.164) a r e  written a s  

where 

(8.166) 

271 



FIGURE 8.6. A multivariable control 
system. 

The problem is stated a s  follows. Find the control vector  xi, XIZ, x 2 ,  xZ2 
as a function of the sys tem outputs y I ,  yI2, y2, yZ2 that  minimizes  the functional 

m 

1 = J [ ~ , , Y : + ~ l 2 ( Y : 2 ) + ~ 2 2 Y ~ + ~ 2 l ( Y 2 2 ) 2 +  
0 

+ ~llx: + 812 (x12)2 + B 2 2 4  + 8 2 1  (x22)21 d l  ( 8 . 1 6 7 )  

in an open domainN(y,, YII. YZ, y ~ .  X I .  x12, X Z ,  xZ2).  
positive numbers. 

The corresponding functional equation i s  

Here a i k  and P i k  a r e  known 

ally:+ a,,y:, + azzy; + a,,y;, + Bllx: + B12x:2 + B 2 2 4  + 
f &Ix&+ (- ally12 - a12yl + a13x12 + a14x22 + ' d l  + .XX2) + 

dJ, + (- a22Y22 - a21Y2 + a23x12 + a24x22+ a25x1 + dy,, + 
+y %+y -=o. (8.168) 

12 dy ,  22 dy, 

Additional equations a r e  obtained by sett ing the der ivat ives  of (8.168) 

w. r. t. x1 

w. r. t .  xI2 

w. r. t .  xz 

w. r. t .  xZ2 

with respect  to  x,,  xlZ, x2, x22 equal to zero.  We have 

(8 .1  69) 

(8 .1 7 0 )  

2fi2Z% + '16 dy,, d$ + (8 .171)  

2 8 2 1 X 2 2 + a 1 4 ~ + a 2 4 ~  d$ d$ =o. (8 .1 7 2 )  

(8.1 73) x l = - -  2p,, [ a 1 5 % + a 2 5 2 ] *  

x12 =- & dJ, (8.174) 

d$ ( 8 . 1 7 5 )  x2=-- a 

1 (8 .1  76) 

d$ dJ, 

d$ 

2811x1 + ' l , ~ + a ,  dy,, =o> 

2812x12 + a 1 3 d y l ?  f a23 ol 

dy,, d$ = o, 

Hence, 
1 

dJ, 
aY,, 

1 " 
282, [ dy,, $-a26 ZI * 
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We have obtained a nonlinear partial  differential equation. I ts  solution 
is sought in the form 

= c11y: + c22Y:2 + + c 4 & 2  + 
f cl2YIYl2 f c13YIY2+ c14Y1Y22+ c d 1 & f 2 +  

+ C24Y12Y22 + C,Y&fY,. (8.1 78) 

Here Cik a r e  unknown coefficients, 

It thus r ema ins  to  find all the partial  derivatives f rom (8.178) and 
dY ik  

inser t  the r e su l t s  in (8.169), (8.170), (8.171), and (8.172). 
u s  to  find the coefficients Cik. 

select  those C ~ A  which ensure stability of the multivariable control system. 

This  will enable 
F r o m  the ent i re  set  of solutions w e  should 
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noninteracting. lagged 163  
lagless 162 
transfer function 227, 235 
variable parameters 230, 232 

Policy, optimal 264 - 265 
Polynomials, property of declining degrees 66 
PONCELET principle 36, 167 
PONTRYAGIN 214 
POPOV's method 212. 231, 237 
Principle of control by deviation 122 

load control 122 
optimality 266, 269 

Poncelet 36, 167 
Watt-Polzunov 4, 36, 122, 167, 171. 173 

application to  MCS synthesis 268 - 273 
Programming. dynamic 264 

linear 240 - 242 

feedback 131 
MCS 89 ff. 101 ff 
subsystems 45. 47 -48 ,  93, 127 -130 
systems 93 

variables 46 

Proportional control 101, 117 

single-loop 42 

Rectification, functional diagram 18 
Rectifying column 17 - 29 

binary 19, 20 ff 
diagram 22 
equations 23 ff 
separation of multicomponent mixtures 1 9  
vacuum distillation 21 

- 20 

Rejection. disturbance 130, 143. 161, 166. 174 
conditions 169. 174. 175 
derivation of 171 

load 139 - 142 
noise 180 - 186 

application of stabilizers to  195 
in the feedback path 200 
physical realizability 186 - 190 
structure ensuring stability and 188 

Relay characteristics 213 
ideal 213 
infinite gain 214 
systems 212 - 222 

stability 213 - 228 
with insensitive zone 213 

Response, real frequency 81 ff 
Rolling mill,  continuous, strip gage control in 

ROUTH--HURWITZ criterion 76 
ROZONOER 143 

1. 2, 6 - 1 2  

SARACHIK ix, 5. 250 
Saturation characteristic 212 
Search characteristic 233 

Searching loss, output 233 
periodic 233 

region 233 
systems 233 

Self-adjusting systems 193 - 194, 224 ff 
synthesis of equivalent fixed-structure 

systems 180 - 238 
Sensitivity 223 - 229 

Bode 224 - 226 
Kokotovic' 227 - 229 
zero 223 

dynamics 113 
multidimensional 2, 3 ,  36, 41, 56, 58. 77 .  96, 

Servosystem. auxiliary curve 114 

113. 114, 150, 158 
SHCHIPANOV 143, 168 
SILNZHANOV ix 
Simplex method 247 
Single-loop system. integral 42 

Single-variable control system 118, 149, 162. 
proportional 42 

182 - 184 
Bode sensitivity 224 - 226 

Sliding action conditions 220 - 222 
Stability 61  ff 

subsystems 175, 192 

and noise rejection, structure ensuring 188 
aperiodic 64 
conditions 187, 190 
criteria 6 1  ff 
infinite-gain 69 -70. 118, 166 
of combined MCS 132 - 133 

MCS, effect of subsystem gain on 59 -69  
relay systems 213 - 220 
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Stability requirements 103' 
Stabilization by proportional feedback 130 
Stabilized elements, gains of 73 
Stabilizer 7 1 ,  122, 129 

equation 211 
isochronous 159 
load rejection 142 
mixed-type 130 
noise rejection 195 
operator 7 1  
passive 118, 225 
real 193 
structures with several 118 - 121 
real, structure with 205 
transfer function 76. 77. 161, 162 

Steady-state operation 42 -48,  127 - 132 
Structural noise rejection 185 

in dynamic systems 182 - 186 
physical realizability 186 - 190 

Structure, canonic 58 
choice of 34 ff, 122 
infinite-gain stability 69 - 7 0  

noiseproof 190 - 193 
proportional-control 101 
stability and noise rejection 188 
with stabilizers 118 - 121, 205 

A1CS 57 - 88 

Subsystem gain, effect on stability 56 - 69 
increase 67. 96 

integral 43 ff. 130 - 132 
multiloop 119. 114 
proportional 45, 47 -48 ,  93. 127 - 130 
single-loop 59 
single-variable 175 
with stabilizer 70, 73 

Synthesis of fixed-structure systems equivalent 
to adaptive systems 180 - 238 

of MCS, application of dynamic programming 
to 268 - 213 

System, adaptive 224 ff (also see Subsystem) 
Bode sensitivity 224 - 226 
control-coupled 71 
disturbance rejection 166 
dynamics 101 - 118 
equivalent to adaptive synthesis of 180 - 238 
fixed-structure 180 -238 
floating 93 
integral 93 - 111 
isochronous 159 - 161 
Kochenburger's 234 ff 
lagged 68 - 69 
lagless 60 - 68 
linearized 221 
multicomponent, general case 182 
noise rejection 182 - 186 

noisy 232 
noncoarse 223 

physical realizability 186 - 190 

System, noninteracting 51 
proportional 117 
relay 212 -222 
single-variable 118. 149, 162 

structural noise rejection 182 - 190 
synthesis 180 - 238 
three-variable 99, 100, 167 - 169 
transfer function 236 
two-variable 95, 107, 117 
variable -structure 212 
zero sensitivity 223 

Bode sensitivity 224 - 226 

Three-dimensional servosystem 96 
Three-variable system 99, 100, 167 - 169 

degenerate 106 
plant- and transducer coupled 104 

Time lag 69 
Transducer coupling 55, 105 

ideal 145, 147 
output 123, 140 
ratio 140, 141. 195 

Transfer function 10, 14, 57, 73. 76, 112, 121 - 127, 
133, 134, 140, 141, 153. 154. 161, 176 ,  183, 
188, 193 f f ,  210, 215, 218, 220, 231, 236 

asymmetric 79 
closed-loop 105, 215, 216. 217, 219, 224. 227 
controlled object 227. 233, 2.15 

noisefree elements 183 
noisy elements 183 
noninteracting system 51 
plant 227. 235 
single-variable system 195 
symmetric 1 9  

AlCS 34 - 31 

Transforms, see Laplace transform 
Transient behavior of a system 218 

component. free 207 
Transition matrix 251 

TRUXAL 223 
TSUKERNIK 5 
TSYPKIN 207. 213 
Two -d im ensiona 1 servosysre m 114 
Two-variable control system 95 

dynamic properties 107 
integral 117 

USDIN 5 

Variable parameters i n  control systems 229 - 233 
Variable-structure systems 212 
Variables, controlled vii 

integral 46 
proportional 46 

calculus, application of 258 - 263 
Variational aspects of multivariable control 239 - 273 

Vector equation, degenerate 103 
VENKOV 5 
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VOZNESENSKII ix. 5 .  144 - 147. 149, 154, 155 WATT-POLZUNOV principle 4. 36. 122, 167. 171, 173 

WARD-LEONARD d. c. engine 8. 11 Zero-sensitivity systems 223, 228 

285 



National Aeronautics and Space Administration 
WASHINGTON, D. C. 20546 

OFFICIAL BUSINESS 
- 

POSTAGE AND FEES PAID 
NATIONAL .AERONAUTICS AND 

SPACE ADMINISTRATION 


